Nova Scotia
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
-
GIS compilation of data used to perform the stacked cumulative chance of success (resource potential map) in Open file 8556. Natural Resources Canada (NRCan) has been tasked, under the Marine Conservation Targets (MCT) initiative announced in Budget 2016, with evaluating the petroleum resource potential for areas identified for possible protection as part of the Government of Canada's commitment to conserve 10% of its marine areas by 2020. As part of this initiative, NRCan's Geological Survey of Canada (GSC) conducted a broad regional study of the petroleum potential over the majority of the Magdalen Basin, which is the principal geological basin in the southern Gulf of St. Lawrence. The GSC resource assessment is visually represented by a qualitative petroleum potential map. Disclaimer: A simplified colored version of the map is displayed on the Web Mapping Service (WMS). The correct version is available for download through the Federal Geospatial Platform (FGP) and GEOSCAN.
-
Monitoring programs are an important component of Marine Protected Area (MPA) management, providing requisite information on the state of, and changes in, protected ecosystems. Monitoring is required to gauge the efficacy of MPAs towards their conservation objectives and provides information needed to evaluate the benefits provided to biodiversity from restricted access. However, in Nova Scotia’s coastal zone, there is a lack of baseline data, including fish diversity and community structure in macrophyte beds, which makes monitoring intractable. In 2017, the Eastern Shore Islands was identified as a coastal Area of Interest (AOI) for the potential establishment of an MPA. In 2018 an overview was conducted, detailing the spatial and temporal ecological attributes of the AOI. This information revealed a unique coastal ecosystem associated with a dense archipelago and relatively natural seascape. The abundance of plant and algal biogenic habitats within the area was assumed to host a diversity of juvenile fish species. The primary objective of this project is to begin development of a long-term biodiversity monitoring program in the Eastern Shore Islands and other coastal Areas of Interest for conservation planning. We propose implementing this program with the use of direct (beach seines, scuba diving, and stable isotope sampling) and indirect (environmental DNA - eDNA) sampling. Environmental DNA (eDNA) is a useful tool to examine marine biodiversity in a non-invasive way, on a small spatial scale. eDNA can be easily collected and filtered and is becoming increasingly cost efficient to sequence and may be a useful marine protected area monitoring tool. While eDNA generally yields comparable results to traditional sampling techniques in terms of biodiversity captured, little is known on how eDNA signals fluctuate across years (or even days to weeks). We will compare species detections using eDNA metabarcoding to visual surveys (scuba and seine nets) to census eelgrass beds across the coastal zone, providing a baseline and time series of species diversity on which to base long-term monitoring. This project will generate inventories of eelgrass bed locations, and fish and invertebrate diversity within eelgrass beds. We additionally collect fish length distribution data to examine seasonal and inter-annual trends in size structure over time. The data generated from direct and indirect sampling will provide a comprehensive and ongoing catalog of species diversity and community structure in coastal eelgrass beds, as well as best-practices for sampling eDNA in the coastal environment. Cite this data as: Jeffery, N.W., Pettitt-Wade, H., Van Wyngaarden, M., and Stanley, R.R.E. Maritimes Coastal Biodiversity Monitoring Program – Beach Seining. Published: December 2023. Coastal Ecosystems Science Division, Maritimes region, Fisheries and Oceans Canada, Dartmouth NS. https://open.canada.ca/data/en/dataset/dbbcb23a-d018-4b70-b8ec-89997aded770
-
We evaluated an autonomous environmental DNA sampler produced by Dartmouth Ocean Technologies Inc (Dartmouth, Canada) compared to time-at-sample filtration in the laboratory to determine the performance of moored samplers for monitoring in the marine world. We deployed three autonomous samplers from DOT in the Bedford Basin (Canada) over a nine-week period in summer/fall 2023. The samplers filtered seawater in situ at programmed interviews over this time period, and we collected contemporaneous samples with a standard vacuum pump during each sampling period. Both eDNA sample types captured similar fish diversity, including typical diversity for the Northwest Atlantic. The invertebrate community detected using the COI marker was different between each sample type, likely due to differences in filter pore size. We found biofouling on the moored samplers was minimal over the study period, even in a high-traffic area such as the Bedford Basin, likely due to the relatively short experimental period, and copper screening covering in the inlet and outlet valves of the instruments. Overall, our results show promise to deploy autonomous eDNA samplers in marine conservation areas to contribute to monitoring in the temperate ocean, but further testing over longer periods of time is needed to determine if DNA remains well-preserved in the autonomous samplers at ambient ocean temperatures. Cite this data as: Jeffery, N.W., Van Wyngaarden, M., and Stanley, R.R.E. Evaluating an Autonomous eDNA Sampler for Marine Environmental Monitoring: Short- and Long-Term Applications. Published: December 2024. Coastal Ecosystems Science Division, Maritimes Region, Fisheries and Oceans Canada, Dartmouth NS.
-
To support the surveillance of key macroalgae and non-indigenous species in Nova Scotia and New Brunswick, five quantitative PCR (qPCR) assays were designed and tested at 111 sites in 2022-2023 targeting the following non-indigenous macroalgal species: Antithamnion sparsum, Bonnemaisonia hamifera, Codium fragile, Dasysiphonia japonica, Fucus serratus. All assays were developed in 2022 by the Center for Environmental Genomics Applications (CEGA, Newfoundland, Canada) except Antithamnion sparsum, for which an assay was developed in 2023 by the Aquatic Biotechnology Laboratory (ABL) at the Bedford Institute of Oceanography. All amplification was performed by the ABL in 2022-2023. The assay developed for Fucus serratus was later determined to be non-specific, and amplifies both F. serratus and Fucus distichus. Cite this data as: Krumhansl K, DiBacco C (2024). Quantitative PCR (qPCR) of Key Macroalgal Non-Indigenous Species in Nova Scotia and New Brunswick Waters. Version 1.1. Fisheries and Oceans Canada. Samplingevent dataset. https://ipt.iobis.org/obiscanada/resource?r=quantitative_qpcr_macroalgal_nonindigenous_species_novascotia_newbrunswick_2022_2023&v=1.1 For additional information please see: Krumhansl K.A., Brooks C.M., Lowen B., O’Brien J., Wong M., DiBacco C. Loss, resilience and recovery of kelp forests in a region of rapid ocean warming. Annals of Botany 2024 Mar 8; 133(1):73-92 Brooks C.M., Krumhansl K.A. 2023. First record of the Asian Antithamnion sparsum Tokida, 1932 (Ceramiales, Rhodophyta) in Nova Scotia, Canada. BioInvasions Records 12(3):745-725.
-
Bay-scale empirical demonstrations of how bivalve aquaculture alters plankton composition, and subsequently ecological functioning and higher trophic levels, are lacking. Temporal, inter- and within-bay variation in hydrodynamic, environmental, and aquaculture pressure limit efficient plankton monitoring design to detect bay-scale changes and inform aquaculture ecosystem interactions. Here, we used flow cytometry to investigate spatio-temporal variations in bacteria and phytoplankton (< 20 µm) composition in four bivalve aquaculture embayments. We observed higher abundances of bacteria and phytoplankton in shallow embayments that experienced greater freshwater and nutrient inputs. Depleted nutrient conditions may have led to the dominance of picophytoplankton cells, which showed strong within-bay variation as a function of riverine vs freshwater influence and nutrient availability. Although environmental forcings appeared to be a strong driver of spatio-temporal trends, results showed that bivalve aquaculture may reduce near-lease phytoplankton abundance and favor bacterial growth. We discuss aquaculture pathways of effects such as grazing, benthic-pelagic coupling processes, and microbial biogeochemical cycling. Conclusions provide guidance on optimal sampling considerations using flow cytometry in aquaculture sites based on embayment geomorphology and hydrodynamics. Cite this data as: Sharpe H, Lacoursière-Roussel A, Barrell J (2024). Monitoring bay-scale bivalve aquaculture ecosystem interactions using flow cytometry. Version 1.2. Fisheries and Oceans Canada. Samplingevent dataset. https://ipt.iobis.org/obiscanada/resource?r=monitoring_bay-scale_bivalve_aquaculture_ecosystem_interactions_using_flow_cytometry&v=1.2
-
This geospatial data depicts potential future development areas recommended by the Committee for the Regional Assessment of Offshore Wind Development in Nova Scotia. These areas were identified as an interim product during the Regional Assessment process. They do not reflect official offshore wind licencing or development areas. The Committee for the Regional Assessment of Offshore Wind Development in Nova Scotia (Committee) is providing federal and provincial Ministers with information, knowledge, and analysis regarding future offshore wind development (OSW). Their work is intended to inform and improve future planning, licencing, permitting, and impact assessment processes. The Committee is tasked to complete its Regional Assessment Report by January 2025. As part of the terms of the amended agreement set out by the Governments of Canada and Nova Scotia, the Committee submitted an interim report to Ministers on March 22, 2024. This report included the preliminary identification of recommended areas for potential future offshore wind. Based on work completed to date, the Committee has identified areas where offshore wind development is technically feasible (based on available information) and will have the least impact within other offshore users. These areas are preliminary and will be refined throughout the remainder of the Regional Assessment. The offshore wind areas identified by the Committee do not reflect official offshore wind licencing areas. The Committee is providing these areas to Ministers for their consideration, as the offshore wind regulatory process is being established.
-
To assess the current distribution of kelp beds and other macroalgae in Nova Scotia and Southwest New Brunswick, subtidal drop camera surveys were performed from 2022-2023 at 140 sites. For each site, a GoPro HERO 10 camera was towed along a deep (7-12m) and shallow (3-5m) depth contour until 20 images were acquired per depth. Where possible, species were identified from photos, with particular care given to kelps (defined here as orders Laminariales and Tilopteridales) and fucoids (order Fucales). Crust-forming algae was not counted. Percent cover was calculated using a 10x10 point grid overlaid on each image and recording the dominant cover type at each point. The depth (in meters) of each photo after correcting for tide height ranged from ~0.5m to ~12m. Depths were corrected to chart datum (lowest astronomical tide) using tide predictions from the nearest tide station, taken from tides.gc.ca. Sampling was performed between July and October. Cite this data as: Krumhansl K, DiBacco C (2024). Camera Surveys of the Subtidal Flora of Nova Scotia and Southwest New Brunswick 2022-2023. Version 1.5. Fisheries and Oceans Canada. Samplingevent dataset. https://ipt.iobis.org/obiscanada/resource?r=camera_surveys_of_the_subtidal_flora_of_nova_scotia_2022-2023&v=1.5 For additional information please see: Krumhansl K.A., Brooks C.M., Lowen B., O’Brien J., Wong M., DiBacco C. Loss, resilience and recovery of kelp forests in a region of rapid ocean warming. Annals of Botany 2024 Mar 8; 133(1):73-92. Brooks C.M., Krumhansl K.A. 2023. First record of the Asian Antithamnion sparsum Tokida, 1932 (Ceramiales, Rhodophyta) in Nova Scotia, Canada. BioInvasions Records 12(3):745-725.
-
“Cape Breton Highlands National Park - Total Ecosystem Forest Carbon Density” is the annual carbon density (tonnes carbon per hectare) within Cape Breton Highlands’ forested ecosystems over a 31-year period from 1990 to 2020. Total Ecosystem Forest Carbon Density includes aboveground and belowground biomass, soil carbon, and dead organic matter. Total Ecosystem Forest Carbon Density was estimated for 31 national parks using the Generic Carbon Budget Model (GCBM), a spatially explicit carbon budget model developed by Canadian Forest Service which uses forest inventory, disturbance, and mean annual temperature data along with yield data to estimate growth and merchantable volume for dominant tree species. Species- and Ecozone-specific equations are then used to convert merchantable volume to aboveground and belowground biomass carbon. Ecozones were classified according to Canada Ecological Land Classification Level 1. The GCBM simulates carbon dynamics to produce spatially explicit estimations of carbon stocks and fluxes. The model simulates and tracks carbon stocks, transfers between Intergovernmental Panel on Climate Change-defined pools, and other metrics including net ecosystem production, net biome production, and emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in annual time steps. The stocks and fluxes are also tracked by disturbance event (e.g., forest fires, insect outbreaks). Total Ecosystem Forest Carbon Density accounts for the effects of natural and anthropogenic disturbances, including wildfires, prescribed burns, and insect outbreaks. These products have a spatial resolution of 30m. This information is part of the Parks Canada Carbon Atlas Series. To obtain a copy of this report, please contact changementclimatique-climatechange@pc.gc.ca. When using this data, please cite as follows: Sharma, T., Kurz, W.A., Fellows, M., MacDonald, A.L., Richards, J., Chisholm, C., Seutin, G., Richardson, K., Keenleyside, K. (2023). Parks Canada Carbon Atlas Series: Carbon Dynamics in the Forests of Canada’s National Parks. Scientific Report. Parks Canada Agency, Gatineau, QC, Canada, 104 p.
-
“Cape Breton Highlands National Park – Total GHG Emissions” datasets consist of estimates of GHG emissions (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) in carbon dioxide equivalents (CO2e) from forested ecosystems in Cape Breton Highlands National Park from 1990 to 2020 (tonnes carbon dioxide equivalent per hectare). Total GHG emissions for 31 national parks were estimated using the Generic Carbon Budget Model (GCBM), a spatially explicit carbon budget model developed by Canadian Forest Service which uses forest inventory, disturbance, and mean annual temperature data along with yield data to estimate growth and merchantable volume for dominant tree species. Species- and Ecozone-specific equations are then used to convert merchantable volume to aboveground and belowground biomass carbon. The GCBM simulates carbon dynamics to produce spatially explicit estimations of carbon stocks and fluxes. The model simulates and tracks carbon stocks, transfers between Intergovernmental Panel on Climate Change (IPCC)-defined pools, and other metrics including net ecosystem production, net biome production, and emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in annual time steps. The stocks and fluxes are also tracked by disturbance event (e.g., forest fires). Total GHG emissions include those from natural processes like respiration and decomposition and those due to natural and anthropogenic disturbances, including wildfires, prescribed burns, and insect outbreaks. These were calculated as the sum of CO2, CH4, and N2O emission estimates in tonnes carbon (tonnes C) generated by the GCBM. Emissions estimates were then converted to carbon dioxide equivalents (CO2e) using the 100-year Global Warming Potential (IPCC Fourth Assessment Report) factors for CH4 (25) and N2O (298). These products have a spatial resolution of 30m. This information is part of the Parks Canada Carbon Atlas Series. To obtain a copy of this report, please contact changementclimatique-climatechange@pc.gc.ca. When using this data, please cite as follows: Sharma, T., Kurz, W.A., Fellows, M., MacDonald, A.L., Richards, J., Chisholm, C., Seutin, G., Richardson, K., Keenleyside, K. (2023). Parks Canada Carbon Atlas Series: Carbon Dynamics in the Forests of Canada’s National Parks. Scientific Report. Parks Canada Agency, Gatineau, QC, Canada, 104 p.
-
“Kejimkujik National Park and National Historic Site - Total GHG Emissions” ddatasets consist of estimates of GHG emissions (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) in carbon dioxide equivalents (CO2e) from forested ecosystems in Kejimkujik National Park and National Historic Site from 1990 to 2020 (tonnes carbon dioxide equivalent per hectare). Total GHG emissions for 31 national parks were estimated using the Generic Carbon Budget Model (GCBM), a spatially explicit carbon budget model developed by Canadian Forest Service which uses forest inventory, disturbance, and mean annual temperature data along with yield data to estimate growth and merchantable volume for dominant tree species. Species- and Ecozone-specific equations are then used to convert merchantable volume to aboveground and belowground biomass carbon. The GCBM simulates carbon dynamics to produce spatially explicit estimations of carbon stocks and fluxes. The model simulates and tracks carbon stocks, transfers between Intergovernmental Panel on Climate Change (IPCC)-defined pools, and other metrics including net ecosystem production, net biome production, and emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in annual time steps. The stocks and fluxes are also tracked by disturbance event (e.g., forest fires). Total GHG emissions include those from natural processes like respiration and decomposition and those due to natural and anthropogenic disturbances, including wildfires, prescribed burns, and insect outbreaks. These were calculated as the sum of CO2, CH4, and N2O emission estimates in tonnes carbon (tonnes C) generated by the GCBM. Emissions estimates were then converted to carbon dioxide equivalents (CO2e) using the 100-year Global Warming Potential (IPCC Fourth Assessment Report) factors for CH4 (25) and N2O (298). These products have a spatial resolution of 30m. This information is part of the Parks Canada Carbon Atlas Series. To obtain a copy of this report, please contact changementclimatique-climatechange@pc.gc.ca. When using this data, please cite as follows: Sharma, T., Kurz, W.A., Fellows, M., MacDonald, A.L., Richards, J., Chisholm, C., Seutin, G., Richardson, K., Keenleyside, K. (2023). Parks Canada Carbon Atlas Series: Carbon Dynamics in the Forests of Canada’s National Parks. Scientific Report. Parks Canada Agency, Gatineau, QC, Canada, 104 p.