RI_543
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Resolution
-
[ARCHIVED] Amendments to the Mortgage Act came into effect Nov 1, 2021 which created new mortgage license types and a new public register of licensed mortgage brokerages, mortgage lenders and mortgage administrators. Please refer to the new public register for current data: https://beta.novascotia.ca/licensed-mortgage-brokers-and-associate-mortgage-brokers. A mortgage broker is person who functions for a fee as an intermediary between a borrower and lender in securing a mortgage from a lender
-
Reprocessing of magnetic data for Yukon was performed between November 2016 and March 2017. Aeromagnetic data were compiled, data of different resolutions were merged, and a series of images individually levelled for each map sheet were produced. For each 250k-scale map, the following magnetic derivative maps were produced: 1. Residual Total Magnetic Field; 2. Reduced-to-Pole Magnetic Field (RTP); 3. First Vertical Derivative of the Reduced-to-Pole Magnetic Field (RTP_VD); and 4. Tilt Derivative of the Reduced-to-Pole Magnetic Field (RTP_TDR). These maps are provided as pdfs, geotiffs and Geosoft grid files. Colour ramps/legends are provided for each map.
-
This historic dataset delineates valley segments based on a number of different natural features. The data applies to valley segments on the Ontario side of the Great Lakes. ALIS has also been incorporated into the [Aquatic Ecosystem Classification: Great Lakes Basin and Wetlands Data Class](/dataset/aquatic-ecosystems-in-the-great-lakes-basin) and the Great Lakes Conservation Blueprint for Aquatic Biodiversity datasets. *[ALIS]: Aquatic Landscape Inventory System We are no longer updating this data. It is best suited for historical research and analysis.
-
This map of the total magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity =0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90°E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the magnetic field.
-
This map of the total magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity =0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90°E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the magnetic field.
-
The Ontario in-filled climate data collection includes information from 339 monitoring stations maintained by the Meteorological Service of Canada. Historical climate data commonly has missing hourly and daily records due to equipment malfunctions, temporary site maintenance or other reasons. “In-filling” is a technical process that draws on data from nearby stations to fill in these missing records. This collection contains fully in-filled precipitation and temperature records for Ontario from 1950 to 2005. It is organized into eight separate databases in Microsoft Access format. One of the databases contains daily in-filled climate records. The remaining seven databases contain hourly in-filled climate records divided into regions for manageability.
-
This spatial dataset represents the boundaries of the areas of responsibility for aggregate inspectors working on behalf of the Ministry of Natural Resources and Forestry. In southern Ontario, inspectors may use various criteria to determine their area of responsibility, including: * geographic township boundaries * the number of licences and permits in a given area * geographic size In northern Ontario, areas of responsibility generally follow MNRF district boundaries. Use our interactive [Pits and Quarries map](https://www.ontario.ca/page/find-pits-and-quarries) to learn more about active aggregate sites and designated areas.
-
Reprocessing of magnetic data for Yukon was performed between November 2016 and March 2017. Aeromagnetic data were compiled, data of different resolutions were merged, and a series of images individually levelled for each map sheet were produced. For each 250k-scale map, the following magnetic derivative maps were produced: 1. Residual Total Magnetic Field; 2. Reduced-to-Pole Magnetic Field (RTP); 3. First Vertical Derivative of the Reduced-to-Pole Magnetic Field (RTP_VD); and 4. Tilt Derivative of the Reduced-to-Pole Magnetic Field (RTP_TDR). These maps are provided as pdfs, geotiffs and Geosoft grid files. Colour ramps/legends are provided for each map.
-
The Ontario Radar DSM has the following features: * source data: 1 arc second spaceborne C-Band Interferometric Synthetic Aperture Radar (IFSAR) data * MNR Lambert Conformal Conic Projection * vertical datum in both EGM96 and CGVD28, separately * elevation value: floating * local Polynomial Interpolation from vector elevation points * spatial resolution: 30 meter * asurface elevation model This product offers significant advancements in elevation data in the province. [Read the details about these advancements and other technical specifications,](https://geohub.lio.gov.on.ca/maps/mnrf::ontario-radar-digital-surface-model/) including data processing, major spatial characteristics of the Radar DSM, and the steps to generate the Northern Ontario Radar DSM. *[MNR]: Ministry of Natural Resources *[DSM]: Digital Surface Model
-
These structure, isopach and zero edge files are part of a series of stratigraphic framework maps for the Saskatchewan Phanerozoic Fluids and Petroleum Systems (SPFPS) project. The series of stratigraphic framework maps for the Saskatchewan Phanerozoic Fluids and Petroleum Systems (SPFPS) project have been produced using 2 km equi-spaced modified grids generated from Golden Software’s Surfer 9 kriging algorithm. The dataset used to produce each of the maps in this series was created using data from several projects completed by the Ministry (Christopher, 2003; Saskatchewan Industry and Resources et al., 2004; Kreis et al., 2004; Marsh and Heinemann, 2006; Saskatchewan Ministry of Energy and Resources et al., 2007; Heinemann and Marsh, 2009); these data were validated and edited as required to facilitate correlations between the various regional projects. In addition, to minimize edge effects during contouring, the senior author also generated stratigraphic data from wells in adjacent jurisdictions.