RI_542
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The National Ecological Framework for Canada's "Surface Material by Ecozone” dataset provides surface material information within the ecozone framework polygon. It provides surface material codes and their English and French language descriptions as well as information about the percentage of the polygon that the component occupies. Surface material includes the abiotic material at the earth's surface. The materials can be: ICE and SNOW - Glacial ice and permanent snow ORGANIC SOIL - Contains more than 30% organic matter as measured by weight ROCK - Rock undifferentiated MINERAL SOIL - Predominantly mineral particles: contains less than 30% organic matter as measured by weight URBAN - Urban areas. Note that only a few major urban area polygons are included on SLC source maps, therefore, do not use for tabulating total urban coverage
-
The Brier Island/Digby Neck area has been identified as an Ecologically and Biologically Significant Area (EBSA) by Fisheries and Oceans Canada and is one of four marine areas within the Bay of Fundy recognised by Parks Canada as of national significance for marine conservation planning. The area is representative of important outer Bay of Fundy features with significant marine mammal, bird, and benthic diversity including potentially important aggregations of sensitive benthic species such as horse mussel and sponge. Much of the information used for this recognition is now over 40 years old and should be re-validated using standardised georeferenced survey methods. As a first phase, a diver-based survey of the sublittoral habitats and associated species was conducted in August and September of 2017 for the Brier Island area. This report summarises the major sublittoral habitat types, species assemblages, and oceanographic conditions observed at 20 locations including Northwest and Southwest Ledges, Gull Rock, Peter’s Island, and Grand Passage. A total of 962 records were made of 178 taxa, consisting of 43 algae and 135 animals. Comparison with historical records largely confirmed the continued presence of unique habitats and species assemblages for which this area was initially recognised as an EBSA. Differences in species richness observed for cryptic and less known taxonomic groups such as sponges and bryozoans were attributable to changes in survey methods and knowledge. Based on these findings, additional surveys of inshore and offshore Brier Island using more quantitative methods developed for other Bay of Fundy EBSAs would further support regional MPA network planning and provide relative scales of species diversity and habitat coverage for this area.
-
The Scotian Shelf population of northern bottlenose whales (Hyperoodon ampullatus) is listed as Endangered under Canada’s Species at Risk Act. Partial critical habitat was identified for this population in the Recovery Strategy first published in 2010 (Fisheries and Oceans Canada 2016), and three critical habitat areas were designated along the eastern Scotian Shelf, encompassing the Gully, Shortland Canyon, and Haldimand Canyon (shapefile available online: https://open.canada.ca/data/en/dataset/db177a8c-5d7d-49eb-8290-31e6a45d786c). However, the Recovery Strategy recognized that additional areas may constitute critical habitat for the population and recommended further studies based on acoustic and visual monitoring to assess the importance of inter-canyon areas as foraging habitat and transit corridors for northern bottlenose whales. In a subsequent study of the distribution, movements, and habitat use of northern bottlenose whales on the eastern Scotian Shelf (Stanistreet et al. in press), several sources of data were assessed and additional important habitat was identified in the inter-canyon areas located between the Gully, Shortland Canyon, and Haldimand Canyon (DFO 2020). A summary of the data inputs, analyses, and limitations is provided below. Year-round passive acoustic monitoring conducted with bottom-mounted recorders at two inter-canyon sites from 2012-2014 revealed the presence and foraging activity of northern bottlenose whales in these areas throughout much of the year, with a seasonal peak in acoustic detections during the spring. Detections from acoustic recordings collected during vessel-based surveys provided additional evidence of species occurrence in inter-canyon areas during the summer months. Photo-identification data collected in the Gully, Shortland, and Haldimand canyons between 2001 and 2017 were used to model the residency and movement patterns of northern bottlenose whales within and between the canyons, and demonstrated that individuals regularly moved between the three canyons as well as to and from outside areas. Together, these results indicated a strong degree of connectivity between the Gully, Shortland, and Haldimand canyons, and provided evidence that the inter-canyon areas function as important foraging habitat and movement corridors for Scotian Shelf northern bottlenose whales. The inter-canyon habitat area polygon was delineated using the 500 m depth contour and straight lines connecting the southeast corners of the existing critical habitat areas, but these boundaries are based on limited spatial information on the presence of northern bottlenose whales in deeper waters. More data are needed to determine whether this area fully encompasses important inter-canyon habitat, particularly in regard to the deeper southeastern boundary. Similarly, the full extent of important habitat for Scotian Shelf northern bottlenose whales remains unknown, and potential critical habitat areas outside the canyons and inter-canyon areas on the eastern Scotian Shelf have not been fully assessed. See DFO (2020) for further information. References: DFO. 2020. Assessment of the Distribution, Movements, and Habitat Use of Northern Bottlenose Whales on the Scotian Shelf to Support the Identification of Important Habitat. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/008. https://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2020/2020_008-eng.html Fisheries and Oceans Canada. 2016. Recovery Strategy for the Northern Bottlenose Whale, (Hyperoodan ampullatus), Scotian Shelf population, in Atlantic Canadian Waters [Final]. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. vii + 70 pp. https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/recovery-strategies/northern-bottlenose-whale-scotian-shelf.html Stanistreet, J.E., Feyrer, L.J., and Moors-Murphy, H.B. In press. Distribution, movements, and habitat use of northern bottlenose whales (Hyperoodon ampullatus) on the Scotian Shelf. DFO Can. Sci. Advis. Sec. Res. Doc. [https://publications.gc.ca/collections/collection_2022/mpo-dfo/fs70-5/Fs70-5-2021-074-eng.pdf] Cite this data as: Stanistreet, J.E., Feyrer, L.J., and Moors-Murphy, H.B. Data of: Northern bottlenose whale important habitat in inter-canyon areas on the eastern Scotian Shelf. Published: June 2021. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9fd7d004-970c-11eb-a2f3-1860247f53e3
-
Electoral districts for the 2021 municipal election. **Collection context** Creation of districts in collaboration with the legal services and the electoral data of the Chief Electoral Officer (DGE). Balancing of districts according to anthropogenic constraints and number of voters. **Collection method** Analysis and creation with computer-aided mapping software. **Attributes** * `DISTRIC_NAME` (`varchar`): District name * `NO` (`long`): Number * `AREA` (`varchar`): Area * `COUNCIL_NAME` (`varchar`): Counsellor name * `SOURCE` (`varchar`): Source * `DATE_CREAT` (`date`): Creation date * `DATE_MODIF` (`date`): Date of modification * `USER_MODIF` (`varchar`): Modified by For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
Geometric and conventional representation of the hydrographic network. The 3D hydrographic layer is represented by several natural or physical elements associated with the presence of water. These elements form part of the layers in the digital cartographic compilation.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
The blue whale (Balaenopterus musculus) is a wide-ranging cetacean that can be found in all oceans, inhabiting coastal and oceanic habitats. In the North Atlantic, little is known about blue whale distribution and genetic structure, and if whether animals found in Icelandic waters, the Azores, or Northwest Africa are part of the same population as those from the Northwest Atlantic. In the Northwest Atlantic, seasonal movements of blue whales and habitat use, including the location of breeding and wintering areas, are poorly understood. The behaviour of remotely-monitored animals can be inferred from a time series of location data. This is because animals tend to demonstrate stochasticity in their movement paths as a result of spatial variation in environmental characteristics, such as topography or prey density (Curio 1976; Gardner et al. 1989; Turchin 1991; Wiens et al. 1993). Predators are expected to decrease travel speed and/or increase turning frequency and turning angle when a suitable resource, e.g., food patch, is encountered (Turchin 1991), otherwise known as area-restricted search (ARS). In contrast, animals in transit or travelling tend to move at faster and more regular speeds, with infrequent and smaller turning angles (Kareiva and Odell 1987; Turchin 1998). Based on satellite telemetry to track the seasonal movements of 24 blue whales from eastern Canada in 2002 and from 2010 to 2015, it was possible to estimate trajectories and locations where ARS behaviour of blue whales was inferred at a 4h time interval. To assess blue whale movements and behavior, a Bayesian switching statespace model (SSSM) was applied to Argos-derived telemetry data (Jonsen et al. 2005; Jonsen et al. 2013). An SSSM essentially estimates animal location at fixed time intervals, movement parameters and behavioral patterns. Two important sources of uncertainty can be measured separately: estimation error resulting from inaccurate observations (Argos location error) and process variability linked to the stochasticity of the movement process (behavior mode estimation) (Jonsen et al. 2003; Patterson et al. 2008). The points visible on land are the result of errors in the Argos geographic position calculation. They have been deliberately left unchanged to assess the performance of the model, which was able to clean up some positions, but not all. Lesage, V., Gavrilchuk, K., Andrews, R.D., and Sears, R. 2016. Wintering areas, fall movements and foraging sites of blue whales satellite-tracked in the Western North Atlantic. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/078. v + 38 p.
-
Hydrographic surfaces cut within the official boundaries of the Montreal Metropolitan Community, including the territory of the Kahnawake reserve and excluding the agglomeration of Montreal. This dataset is complementary to the data from the [hydrography of the Montreal agglomeration] (https://donnees.montreal.ca/dataset/hydrographie). They are made available for use in a basemap to put the agglomeration of Montreal into context.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
This data set represents the interventions determined by the City of Montreal's Intervention Plan for the period 2016-2021. This planning includes both the infrastructure deficit and the maintenance needs during the period in question. The Intervention Plan is the result of a macroscopic analysis of physical and state data. Moreover, the capacity of the City and its boroughs to carry out is not unlimited; it is often determined by a combination of factors, including the availability of budgets, coordination needs, planning capacity as well as the capacity of the market to carry out this work. Consideration should also be given to the social and economic impacts of infrastructure work. These are all factors that may justify the delay of several interventions to later years. Data is available in the following documents: - The summary table shows the classes of integrated interventions of A, B, C or D for the unified sections. For each section, a recommendation on the work is indicated if necessary. These tables help managers identify priority segments and sections. If the work dates of the assets on the same street section are different, the section is repeated as many times as there are different dates for the section. - The digital file shows the results of the Intervention Plan by unified section. This unit is the linear geometric element that supports the management data for all the infrastructure segments of the intervention plan. The division of the unified section is usually done at roadway intersections and easement limits. If the work dates of the assets on the same street section are different, the section is repeated as many times as there are different dates for the section. - The map of integrated interventions presents opportunities for coordinating interventions between the three drinking water, sewage and road networks. For more information on water management in Montreal, consult [the City of Montreal's website] (https://montreal.ca/unites/service-de-leau). The 2023-2027 results are available on the page [Results of the Action Plan for the assets of drinking water, sewage and roads networks (2023-2027)] page (https://donnees.montreal.ca/dataset/resultats-plan-intervention-actifs-eau-voirie-2023).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
In 2012 and 2013, Fisheries and Oceans Canada surveyed the benthos in two areas closed to bottom contact fishing, the Narwhal Overwintering and Coldwater Coral Zone (now the Disko Fan Conservation Area, DFCA), and the Hatton Basin Voluntary Coral Protection Zone (now the Hatton Basin Conservation Area, HBCA). Samples were collected following protocols recommended by the Arctic Council’s Circumpolar Biodiversity Monitoring Plan for the purposes of providing baseline data for future monitoring of benthic invertebrates in this sensitive region, and for facilitating pan-Arctic comparisons of benthic communities. Five biodiversity monitoring stations were established, four in the DFCA and one in the HBCA, each of which was fully sampled according to those protocols with Van Veen grabs or box corers, drop cameras and temperature recorders attached to the gear. This report summarises the grab/core-sampled benthic fauna collected during the 2012 survey of the Conservation Areas and complements another report documenting the epibenthos from the camera transects in the DFCA. Here we report on macrofauna in the 1-cm size fraction, and on foraminiferan meiofauna. The data provided is presented in the following report (see related link) : Jacobs, K., Bouchard Marmen, M., Rincón, B., MacDonald, B., Lirette, C., Gibb, O., Treble, M., and Kenchington, E. 2022. Biodiversity Monitoring Stations for Benthic Macrofauna and Meiofauna in the Disko Fan and Hatton Basin Conservation Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3487: vi + 86 p. Cite this data as: Bouchard Marmen, Marieve; Rincon, Beatriz ; MacDonald, Barry; Lirette, Camille; Gibb, Olivia; Treble, Margaret ; Jacobs, Kevin; Kenchington, Ellen (2022). Biodiversity Monitoring Stations for Benthic Macrofauna and Meiofauna in the Disko Fan and Hatton Basin Conservation Areas. Published January 2023. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/b7bcff18-698b-4d40-a7bd-13d39925cbeb
-
The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video -Tabusintac 2008. Published: March 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/d1c58bc6-69d4-47b2-bb19-988f88233900
Arctic SDI catalogue