RI_542
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Layers that present various important parameters such as inventories, presence, sightings, distribution, relative occurrence or catch rates, critical habitat, breeding and feeding areas, potential spawning and haul-out sites for the different species with status under the Species at Risk Act (SARA). The act classifies those species as being either extirpated, endangered, threatened, or of special concern. Under SARA, Fisheries and Oceans Canada must produce recovery strategies and action plans for aquatic species listed as endangered or threatened. The act is part of Canada’s strategy to protect hundreds of wild plants and animal species from becoming extinct, and to help in their recovery. The different species represented by the layers are the following: 1. American shad (Alosa sapidissima) 2. Atlantic sturgeon (Acipenser oxyrinchus) 3. Atlantic wolffish (Anarhichas lupus) 4. Beluga whale (Delphinapterus leucas) 5. Blue whale (Balaenoptera musculus) 6. Copper redhorse (Moxostoma hubbsi) 7. Eelgrass (Zostera marina) 8. Grey seal (Halichoerus grypus) 9. Harbor seal (Phoca vitulina) 10. Humpback whale (Megaptera novaeangliae) 11. Lake sturgeon (Acipenser fulvescens) 12. Lumpfish (Cyclopterus lumpus) 13. Northern wolffish (Anarhichas denticulatus) 14. Rainbow smelt (Osmerus mordax) 15. Sea pens (Pennatulacea) 16. Seaweed 17. Smooth skate (Malacoraja senta) 18. Sponges 19. Spotted wolffish (Anarhichas minor) 20. Striped bass (Morone saxatilis) 21. Thorny skate (Amblyraja radiata) 22. Winter skate (Leucoraja ocellata)
-
Hydrographic surfaces cut within the official boundaries of the Montreal Metropolitan Community, including the territory of the Kahnawake reserve and excluding the agglomeration of Montreal. This dataset is complementary to the data from the [hydrography of the Montreal agglomeration] (https://donnees.montreal.ca/dataset/hydrographie). They are made available for use in a basemap to put the agglomeration of Montreal into context.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
In 2019, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8, Sentinel-2) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by: provincial crop insurance companies in Alberta, Saskatchewan, Manitoba, & Quebec; point observations from the PEI Department of Environment, Water and Climate Change and data collection supported by our regional AAFC Research and Development Centres in St. John’s, Kentville, Charlottetown, Fredericton, and Guelph.
-
As part of the development of a nationally-consistent sampling design within the Aquaculture Monitoring Program (AMP), this data reports mesozooplankton assemblages observed at nine coastal shellfish aquaculture sites, located across four DFO regions, with sampling across months, tide phases, and sampling locations. In most sites, strong spatial effects were observed, while tide effects were generally less important for structuring the mesozooplankton communities. Seasonality emerged as an essential factor to design an efficient monitoring program. This dataset represents the first large-scale Canadian coastal study using imaging technology for plankton taxonomic Identification. Cite this data as: Finnis, S., Guyondet, T., McKindsey, C.W., Arseneau, J., Barrell, J., Duhaime, J., Filgueira, R., Gallardi, D., Gaspard, D., Gibb, O., Goodwin, C., Hua, K., Macdonald, T., Milne, R., Lacoursière-Roussel, A. 2023. Guidance on sampling effort to monitor mesozooplankton communities at Canadian bivalve aquaculture sites using an optical imaging system. Can. Tech. Rep. Fish. Aquat. Sci. 3581: vii + 101 p
-
The West Nile virus (WNV) activity zone corresponds to the territory where WNV cases have been documented by human, animal, and entomological (mosquito) surveillance. This zone indicates where there is a higher probability of the virus being present in Quebec based on historical data. All surveillance data was aggregated to form the WNV's area of activity over the study period, by merging the 2 km resolution buffer zones and the municipalities of each mosquito case or batch. Outside of this area, the presence of WNV remains possible, but the virus has not been detected by surveillance. This can be explained, among other things, by the movements of infected birds and mosquitoes over varying distances. The climatic zone favorable to the transmission of WNV by Culex pipiens (one of the main vectors of the virus) highlights the territory where the estimated seasonal average temperature could be conducive to the transmission of WNV in Quebec. This zone is defined by a seasonal average temperature (calculated from April to September) greater than or equal to 14°C. The indicator was calculated for historical records 1989-2018 (current distribution) and for the horizons of 2030, 2050 and 2080 according to the greenhouse gas emissions scenarios SSP2-4.5 and SSP3-7.0 (future distribution). Seasonal mean temperatures were calculated during the WNV's active period (i.e. April to September) by adding up the daily maximum and minimum temperatures and then dividing them by two. These temperatures were generated with a resolution of 10 km x 10 km covering the whole of Quebec for time horizons and greenhouse gas emission scenarios. The final value for seasonal mean temperatures used is the 50th percentile. For more information on the area of activity of the WNV or the climatic zones favorable to the transmission of WNV by Culex pipiens, you can consult the [Mapping of the current and future distribution of West Nile virus in Quebec in the context of climate change] (https://www.inspq.qc.ca/publications/3693) OR the INSPQ website [Current and future distribution maps of zoonoses in Quebec] (https://www.inspq.qc.ca/zoonoses/cartes).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
Map of the proportion of individuals (15 years and over) with at least a university bachelor's degree in Official Language Minority Communities. Refers to the individual's educational attainment or highest certificate, diploma or degree obtained by the person. The data used is based on the 2016 Census of Canada, 25% sample, the universe is the population 15 years and over.
-
McElhanney Consulting Services Ltd (MCSL) has performed a LiDAR and Imagery survey in southern Saskatchewan. The purpose was to generate DEMs for hydraulic modeling of floodplain, digital terrain maps, and other products for portions of the Swift Current Creek valley and other miscellaneous tributaries and related water course valleys in and around the City of Swift Current. The acquisition was completed between the 16th and 25th of October, 2009. The survey consisted of approximately 790 square kilometers of coverage. While collecting the LiDAR data, we also acquired aerial photo in RGB and NIR modes consisting of 1649 frames each. In addition to the main area of interest, McElhanney has acquired some LiDAR and photo of low lying areas adjacent to the project area. This additional area was acquired on speculation that the data may be required in the future. The 3Dimensional laser returns (point cloud) were classified using Microstation (v8), Terrascan and TerraModeler. A series of algorithms based on topography were created to separate laser returns that hit the ground from the ones that hit objects above the ground. Steps taken are: Classified LiDAR surface as Bare earth, Classified other features as non-bare earth or default, Formatted to ASPRS .LAS V1.1 (Class 1 - Default (non-bare earth), Class 2 – Ground points (bare earth)), 239 tiles each 2km x2km generated for LiDAR data, File prefix FF – Classified (Non-Bare Earth and Bare Earth), File Prefix BE – Bare Earth only, Bare Earth Model Key Point (MKPts) surface files are thinned Bare earth LiDAR points. MKPts files generate a virtually identical surface without the large file size, MKPts file format is ASCII (Easting Northing Z-elevation) xyz and LAS format.
-
The National Ecological Framework for Canada's "Land Cover by Ecodistrict” dataset provides land cover information within the ecodistrict framework polygon. It provides landcover codes and their English and French language description as well as information about the percentage of the polygon that the component occupies.
-
The Scotian Shelf population of northern bottlenose whales (Hyperoodon ampullatus) is listed as Endangered under Canada’s Species at Risk Act. Partial critical habitat was identified for this population in the Recovery Strategy first published in 2010 (Fisheries and Oceans Canada 2016), and three critical habitat areas were designated along the eastern Scotian Shelf, encompassing the Gully, Shortland Canyon, and Haldimand Canyon (shapefile available online: https://open.canada.ca/data/en/dataset/db177a8c-5d7d-49eb-8290-31e6a45d786c). However, the Recovery Strategy recognized that additional areas may constitute critical habitat for the population and recommended further studies based on acoustic and visual monitoring to assess the importance of inter-canyon areas as foraging habitat and transit corridors for northern bottlenose whales. In a subsequent study of the distribution, movements, and habitat use of northern bottlenose whales on the eastern Scotian Shelf (Stanistreet et al. in press), several sources of data were assessed and additional important habitat was identified in the inter-canyon areas located between the Gully, Shortland Canyon, and Haldimand Canyon (DFO 2020). A summary of the data inputs, analyses, and limitations is provided below. Year-round passive acoustic monitoring conducted with bottom-mounted recorders at two inter-canyon sites from 2012-2014 revealed the presence and foraging activity of northern bottlenose whales in these areas throughout much of the year, with a seasonal peak in acoustic detections during the spring. Detections from acoustic recordings collected during vessel-based surveys provided additional evidence of species occurrence in inter-canyon areas during the summer months. Photo-identification data collected in the Gully, Shortland, and Haldimand canyons between 2001 and 2017 were used to model the residency and movement patterns of northern bottlenose whales within and between the canyons, and demonstrated that individuals regularly moved between the three canyons as well as to and from outside areas. Together, these results indicated a strong degree of connectivity between the Gully, Shortland, and Haldimand canyons, and provided evidence that the inter-canyon areas function as important foraging habitat and movement corridors for Scotian Shelf northern bottlenose whales. The inter-canyon habitat area polygon was delineated using the 500 m depth contour and straight lines connecting the southeast corners of the existing critical habitat areas, but these boundaries are based on limited spatial information on the presence of northern bottlenose whales in deeper waters. More data are needed to determine whether this area fully encompasses important inter-canyon habitat, particularly in regard to the deeper southeastern boundary. Similarly, the full extent of important habitat for Scotian Shelf northern bottlenose whales remains unknown, and potential critical habitat areas outside the canyons and inter-canyon areas on the eastern Scotian Shelf have not been fully assessed. See DFO (2020) for further information. References: DFO. 2020. Assessment of the Distribution, Movements, and Habitat Use of Northern Bottlenose Whales on the Scotian Shelf to Support the Identification of Important Habitat. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/008. https://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2020/2020_008-eng.html Fisheries and Oceans Canada. 2016. Recovery Strategy for the Northern Bottlenose Whale, (Hyperoodan ampullatus), Scotian Shelf population, in Atlantic Canadian Waters [Final]. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. vii + 70 pp. https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/recovery-strategies/northern-bottlenose-whale-scotian-shelf.html Stanistreet, J.E., Feyrer, L.J., and Moors-Murphy, H.B. In press. Distribution, movements, and habitat use of northern bottlenose whales (Hyperoodon ampullatus) on the Scotian Shelf. DFO Can. Sci. Advis. Sec. Res. Doc. [https://publications.gc.ca/collections/collection_2022/mpo-dfo/fs70-5/Fs70-5-2021-074-eng.pdf] Cite this data as: Stanistreet, J.E., Feyrer, L.J., and Moors-Murphy, H.B. Data of: Northern bottlenose whale important habitat in inter-canyon areas on the eastern Scotian Shelf. Published: June 2021. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9fd7d004-970c-11eb-a2f3-1860247f53e3
-
Geospatial data for public transit agencies in Canada, with information on stop locations, route locations, route types, level of service, wheel chair access, bike access, and more.