cl_maintenanceAndUpdateFrequency

RI_542

647 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 647
  • Categories  

    Geometric and conventional representation of the hydrographic network. The 3D hydrographic layer is represented by several natural or physical elements associated with the presence of water. These elements form part of the layers in the digital cartographic compilation.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    In 2019, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8, Sentinel-2) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by: provincial crop insurance companies in Alberta, Saskatchewan, Manitoba, & Quebec; point observations from the PEI Department of Environment, Water and Climate Change and data collection supported by our regional AAFC Research and Development Centres in St. John’s, Kentville, Charlottetown, Fredericton, and Guelph.

  • Categories  

    Monthly mean currents from Bedford Institute of Oceanography North Atlantic Model (BNAM) results were averaged over 1990 to 2015 period to create monthly mean climatology for the Northwest Atlantic Ocean, which can be considered as a representation of the climatological state of the Northwest Atlantic Ocean. The BNAM model is eddy-resolving, NEMO-based ice-ocean coupled North Atlantic Ocean model developed at the Bedford Institute of Oceanography (BIO) to support DFO monitoring programs. The data available here is monthly climatology for eight selected depths (surface, 110 m, 156 m, 222 m, 318 m, 541 m, 1062 m, bottom) in 1/12 degree spatial resolution. The data for each month from 1990 until present for the entire model domain ( 8°–75°N latitude and 100°W–30°E longitude) and various depths is available upon request. The 1990-2017 model hindcast result is compared with observational data from surface drifter and satellite altimetry. The model demonstrates good skill in simulating surface currents, winter convection events in the Labrador Sea, and the Atlantic Meridional Overturning Circulation as observed at 26.5°N and 41°N. Model results have been used to interpret changes in the Labrador Current and observed warming events on the Scotian Shelf, and are reported through the annual AZMP Canadian Science Advisory Secretariat Process. When using data please cite following: Wang, Z., Lu, Y., Greenan, B., Brickman, D., and DeTracey, B., 2018. BNAM: An eddy resolving North Atlantic Ocean model to support ocean monitoring. Can. Tech. Rep. Hydrogr. Ocean. Sci. 327: vii + 18p

  • Categories  

    This layer details Important Areas (IAs) relevant to important geographic features in the Strait of Georgia (SOG) ecoregion. This data was mapped to inform the selection of marine Ecologically and Biologically Significant Areas (EBSA). Experts have indicated that these areas are relevant based upon their high ranking in one or more of three criteria (Uniqueness, Aggregation, and Fitness Consequences). The distribution of IAs within ecoregions is used in the designation of EBSAs. Canada’s Oceans Act provides the legislative framework for an integrated ecosystem approach to management in Canadian oceans, particularly in areas considered ecologically or biologically significant. DFO has developed general guidance for the identification of ecologically or biologically significant areas. The criteria for defining such areas include uniqueness, aggregation, fitness consequences, resilience, and naturalness. This science advisory process identifies proposed EBSAs in Canadian Pacific marine waters, specifically in the Strait of Georgia (SOG), along the west coast of Vancouver Island (WCVI, southern shelf ecoregion), and in the Pacific North Coast Integrated Management Area (PNCIMA, northern shelf ecoregion). Initial assessment of IAs in PNCIMA was carried out in September 2004 to March 2005 with spatial data collection coordinated by Cathryn Clarke. Subsequent efforts in WCVI and SOG were conducted in 2009, and may have used different scientific advisors, temporal extents, data, and assessment methods. WCVI and SOG IA assessment in some cases revisits data collected for PNCIMA, but should be treated as a separate effort. Other datasets in this series detail IAs for birds, cetaceans, coral and sponges, fish, invertebrates, and other vertebrates. Though data collection is considered complete, the emergence of significant new data may merit revisiting of IAs on a case by case basis.

  • Categories  

    This dataset is a contribution to the development of a kelp distribution vector dataset. Bull kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) are important canopy-forming kelp species found in marine nearshore habitats on the West coast of Canada. Often referred to as a foundation species, beds of kelp form structural underwater forests that offer habitat for fishes and invertebrates. Despite its far-ranging importance, kelp has experienced a decline in the west coast of North America. The losses have been in response to direct harvest, increase in herbivores through the removal of predators by fisheries or diseases, increase in water turbidity from shoreline development as well as sea temperature change, ocean acidification, and increased storm activates. Understanding these impacts and the level of resilience of different kelp populations requires spatiotemporal baselines of kelp distribution. The area covered by this dataset includes the BC coast and extends to portions of the Washington and Alaska coasts. This dataset was created using 137 British Admiralty (BA) charts, including insets, with scales ranging from 1:6,080 to 1:500,000, created between 1858 and 1956. All surveys were based on triangulation, in which a sextant or theodolite was used to determine latitude and angles, while a chronometer was used to help determine longitude. First, each BA chart was scanned by the Canadian Hydrographic Service (CHS) using the CHS Colortrac large format scanner, and saved as a Tagged Image Format at 200 DPI, which was deemed sufficient resolution to properly visualize all the features of interest. Subsequently, the scanned charts were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping BA charts. Finally, the kelp features were digitized, and corresponding chart information (scale, chart number, title, survey start year, survey end year, and comments) was added as attributes to each feature. Given the observed differences in kelp feature representation at different scales, when digitizing kelp features, polygons were used to represent the discrete observations, and as such, they represent presence of kelp and not kelp area. Polygons were created by tracing around the kelp feature, aiming to keep the outline close to the stipe and blades. The accuracy of the location of the digitized kelp features was defined using a reliability criterion, which considers the location of the digitized kelp feature (polygon) in relation to the local depth in which the feature occurs. For this, we defined a depth threshold of 40 m to represent a low likelihood of kelp habitat in areas deeper than the threshold. An accuracy assessment of the digitized kelp features concluded that 99% of the kelp features occurred in expected areas within a depth of less than 40 m, and only about 1% of the features occurred completely outside of this depth.

  • Categories  

    The National Ecological Framework for Canada's "Surficial Geology by Ecozone” dataset contains tables that provide surficial geology information with the ecozone framework polygons. It provides codes that characterize surficial geology (unconsolidated geologic materials) and their English and French-language descriptions as well as information about the area and percentage of the polygon that the material occupies.

  • Categories  

    The National Ecological Framework for Canada's "Surficial Geology by Ecoregion” dataset contains tables that provide surficial geology information with the ecoregion framework polygons. It provides codes that characterize surficial geology (unconsolidated geologic materials) and their English and French-language descriptions as well as information about the area and percentage of the polygon that the material occupies.

  • Categories  

    Bay Scale Assessment of Nearshore Habitat Bras d'Or Lake - St. Andrews 2011 data is part of the publication Bay Scale Assessment of Nearshore Habitat Bras d'Or Lakes. A history of nearshore benthic surveys of Bras d’Or Lake from 2005 – 2011 is presented. Early work utilized drop camera and fixed mount sidescan. The next phase was one of towfish development, where camera and sidescan were placed on one platform with transponder-based positioning. From 2009 to 2011 the new towfish was used to ground truth an echosounder. The surveys were performed primarily in the northern half of the lake; from 10 m depth right into the shallows at less than 1 m. Different shorelines could be distinguished from others based upon the relative proportions of substrate types and macrophyte canopy. The vast majority of macrophytes occurred within the first 3 m of depth. This zone was dominated by a thin but consistent cover of eelgrass (Zostera marina L.) on almost all shores with a current or wave regime conducive to the growth of this plant. However, the eelgrass beds were frequently in poor shape and the negative impacts of commonly occurring water column turbidity, siltation, or possible localized eutrophication, are suspected. All survey data were placed into a Geographic Information System, and this document is a guide to that package. The Geographic Information System could be used to answer management questions such as the placement and character of habitat compensation projects, the selection of nearshore protected areas or as a baseline to determine long term changes., Vandermeulen, H. 2016. Video-sidescan and echosounder surveys of nearshore Bras d’Or Lake. Can. Tech. Rep. Fish. Aquat. Sci. 3183: viii + 39 p. Cite this data as: Vandermeulen H. Bay Scale Assessment of Nearshore Habitat Bras d'Or Lake - St. Andrews 2011. Published May 2022. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S.

  • Categories  

    In 2020, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8, Sentinel-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by: provincial crop insurance companies in Alberta, Manitoba, & Quebec; point observations from the PEI Department of Environment, Water and Climate Change; the Ontario Ministry of Agriculture, Food and Rural Affairs; and data collection supported by our regional AAFC Research and Development Centres in St. John’s, Charlottetown, Fredericton, and Guelph. Due to COVID-19 travel restrictions, complete sampling coverages in NL, NS, NB and BC were not possible, as a result the general agriculture class (120) is found in these provinces in areas where there was no ground data collected.

  • Categories  

    Effective conservation planning relies on understanding population connectivity which can be informed by genomic data. This is particularly important for sessile species like the horse mussel (Modiolus modiolus), a key habitat-forming species and conservation priority in Atlantic Canada), yet little genomic information is available to describe horse mussel connectivity patterns. We used more than 8000 restriction-site associated DNA sequencing-derived single nucleotide polymorphisms and a panel of 8 microsatellites to examine genomic connectivity among horse mussel populations in the Bay of Fundy, along the Scotian Shelf, and in the broader northwestern Atlantic extending to Newfoundland. Despite phenotypic differences between sampling locations, we found an overall lack of genetic diversity and population structure in horse mussels in the Northwest Atlantic Ocean. All sampled locations had low heterozygosity, very low FST, elevated inbreeding coefficients, and deviated from Hardy-Weinberg Equilibrium, highlighting generally low genetic diversity across all metrics. Principal components analysis, Admixture analysis, pairwise FST calculations, and analysis of outlier loci (potentially under selection) all showed no independent genomic clusters within the data, and an analysis of molecular variance showed that less than 1% of the variation within the SNP dataset was found between sampling locations. Our results suggest that connectivity is high among horse mussel populations in the Northwest Atlantic, and coupled with large effective population sizes, this has resulted in minimal genomic divergence across the region. These results can inform conservation design considerations in the Bay of Fundy and support further integration into the broader regional conservation network. Cite this data as: Van Wyngaarden, Mallory et al. (2024). Widespread genetic similarity between Northwest Atlantic populations of the horse mussel, Modiolus modiolus. Published: May 2025. Coastal Ecosystem Science Division, Maritimes Region, Fisheries and Oceans Canada, Dartmouth, NS.