Format

WFS

75 record(s)
 
Type of resources
Available actions
Categories
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
From 1 - 10 / 75
  • Categories  

    Multi-Agency Ground Plot (MAGPlot) database is a Canadian forest ground-plot data repository. Different agencies, including National Forest Inventory (NFI) and 12 Canadian jurisdictions (AB, BC, MB, NB, NL, NS, NT, ON, PE, QC, SK, and YT), contributed forest ground plot datasets in their original format into MAGPlot. The datasets delivered to us were quality controlled, standardized, and harmonized, and integrated into a single, centralized, and analysis-ready format database. The current version (MAGPlot_v1) uses the historical and most up-to-date measurements provided by the collaborators. Several datasets are excluded from this release due to pending agreements and ongoing processing, these include Manitoba, Newfoundland, Saskatchewan and Nova Scotia. The standardized and harmonized dataset were presented in eight different data tables (four sites and four trees’ measurements tables) in a relational database schema. Sites’ related tables include information pertaining to sites’ geographical locations, treatments, and disturbances while trees’ information contain information related to measured tree attributes, including trees’ biophysical parameters, tree growth, species, status, and health conditions. While all contributors provided large and small tree plot measurements, only NFI, AB, MB and SK provided regeneration plot measurements. MAGPlot’s main objective is to present the data in a findable, accessible, interoperable, and reusable format for a pan-Canadian forest research. The future versions are expected to include more tables, new attributes, updated and/or new measurements. MAGPlot_v1 is hosted on the Canadian Council of Forest Ministers’ data portal, the National Forest Information System (http://nfis.org). Ground plot sites requiring a signed data use agreement with the contributing jurisdiction have been excluded from this service, contact nfisupport@nfis.org for to arrange access to those sites. Jurisdictions/Groups excluded from this service: Alberta, Manitoba, National Forest Inventory, Nova Scotia, Northwest Territories.

  • Categories  

    WFS tjänsten för Stationsregistret. Stationsregistret är ett samlat nationellt register över anläggningar (stationer, provplatser) där man bedriver miljöövervakning.

  • Categories  

    Sea Ice Frequency charts display the percentage of days with more than 15 % ice coverage for each month over a 30 years periode.

  • Categories  

    Forests cover large areas of Canada but only some of these forests are actively managed. The Map of Forest Management in Canada provides a generalized classification of forest management in Canada, including: protected areas, Treaty/Settlement Lands (including Treaty Lands identified in Final Agreements, Land Claim Agreements and Settlements), Indian Reserves, other federal reserves (including military training areas), provincial and territorial reserves and restricted use areas, private lands, short- and long-term Crown forest tenure areas and areas with no current Crown timber dispositions. The Managed Forest Map of Canada dataset provides a wall-to-wall classification of lands in Canada. It does not differentiate areas of forest from non-forest. The Managed Forest Map of Canada differs from maps defining the area designated as “managed forest” for greenhouse gas inventory reporting purposes and does not replace those maps. Instead, the Managed Forest Map of Canada shows areas that are currently managed, as of June 2017, and provides generalized management type classification for those areas. Collaborating agencies plan to update the dataset periodically as needed, and remain open to receiving advice from experts concerning refinement priorities for future versions.

  • Categories  

    On July 6, a 72-car train, carrying 100 tons of crude oil each, exploded in Lac-Mégantic. The fire has now been extinguished. Several buildings in the city center were destroyed. Some forty buildings would be affected, including homes and businesses. The yellow perimeter (always active) corresponds to the controlled access zone. The red perimeter (inactive) was the area restricted to emergency responders. The green perimeter (inactive) was the reintegration zone. Purpose: To identify in the field the different perimeters related to ongoing operations.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    Data layers show commercial fishery footprints for directed fisheries using bottom and pelagic longlines for groundfish and large pelagics respectively, and traps for hagfish, LFA 41 and Grey Zone lobster, snow crab, and other crab on the Scotian Shelf, the Bay of Fundy, and Georges Bank in NAFO Divisions 4VWX and Canadian portions of 5Y and 5Z. Bottom longline and trap fishery maps aggregate commercial logbook effort (bottom longline soak time and logbook entries) per 2-minute grid cell using 2002–2017 data. Pelagic longline maps aggregate speed-filtered vessel monitoring system (VMS) track lines as vessel minutes per km2 on a base-10 log scale using 2003–2018 data. The following data layers are included in the mapping service for use in marine spatial planning and ecological risk assessment: 1) multi-year and quarterly composite data layers for bottom longline and trap gear, and 2) multi-year and monthly composite data layers for pelagic longline gear. Additional details are available online: S. Butler, D. Ibarra and S. Coffen-Smout, 2019. Maritimes Region Longline and Trap Fisheries Footprint Mapping for Marine Spatial Planning and Risk Assessment. Can. Tech. Rep. Fish. Aquat. Sci. 3293: v + 30 p. http://publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-6-3293-eng.pdf

  • Categories  

    An annual trawl survey is conducted in Southwestern Nova Scotia and the Bay of Fundy to assess the lobster stocks in the area. The survey is conducted with the Northeast Fisheries Science Center Ecosystem Survey Trawl (NEST), a small mesh trawl with a cod end liner, which ensures the capture of various sizes of lobster. The dimensions and location of the trawl are monitored and recorded throughout the tow using an electronic trawl mensuration system. In addition, water temperature and depth are also monitored. The target tow length is 1 kilometer which is tracked using an Olex marine charting system. Vessel crew, DFO science staff and a contracted at sea observer work together to perform required tasks and collect all relevant data. Catch from each tow is separated by species, weighed and counted. Length frequency data is collected on select groundfish and crab species and detailed morphometric data is collected on each lobster. PARAMETERS COLLECTED: Set information and profile - includes set date, time depth and location Catch summary - weight and number caught of each species Length Freqeuncies - completed for up to 100 fish for selected species Lobster Morphological Data - detailed data collected on each lobster Bottom Temperature Trawl Metrics NOTES ON QUALITY CONTROL: Data is visually verified and double keypunched. On loading to Oracle, data is run through rigorous automated checks to verify data accuracy and integrity. SAMPLING METHODS: The target tow length is 1 kilometer which is tracked using an Olex marine charting system. Vessel crew, DFO science staff and a contracted at sea observer work together to perform required tasks and collect all relevant data. Catch from each tow is separated by species, weighed and counted. Length frequency data is collected on select groundfish and crab species, detailed morphometric data is collected on each lobster. Bottom temperature and trawl metrics are collected for each tow. CITATION LIST: Denton, Cheryl M.. 2020. Maritimes Region Inshore Lobster Trawl Survey Technical Description. Canadian technical reports of fisheries and aquatic sciences (DFO) 3376.

  • Categories  

    Species Distribution Models (SDM) were used to predict and identify priority areas for enhanced monitoring of cetaceans in eastern Canadian waters off Nova Scotia, Newfoundland and Labrador. This data set represents information presented in Gomez et al. (2020) and includes sighting records and SDM outputs for ten cetacean species with sufficient records (n > 450) and sightings only for an additional six species. For more information about sighting records including which were included in each SDM, please see Gomez et al. 2020. This study used a compilation of aerial- and vessel-based cetacean sightings data from 1975-2015 assembled in Gomez et al. (2017) from variety of sources. Note that sightings data from many of these sources are not effort-corrected and apparent distribution patterns based on these opportunistic sightings data are biased by when and where survey activities were conducted. Unfavorable weather and reduced visual effort in winter, spring, and autumn likely account for the fewer sighting records in these seasons compared to summer. The dataset does not include dead animal, stranding, entanglement or entrapment data. While some of the databases include records obtained during the whaling period (catches or sightings recorded prior to 1975), for all analyses/modelling conducted in this study, only sightings of free-swimming whales obtained during the post-whaling period (1975-2015) were used. Quality control checks included discarding all records outside of our study area and removing redundant records (identical species, day, month, latitude and longitude).The data used do not reflect any updates or corrections to the databases that have occurred since the data were compiled in 2016. Sightings are not available for download here, please contact the original data sources listed below to obtain raw sightings data. This study represents an important initiative in eastern Canada to highlight key areas for cetacean monitoring in waters off Nova Scotia, Newfoundland and Labrador. Habitats with high suitability are interpreted as areas where cetacean monitoring efforts may be prioritized, and results can help direct future survey efforts. These model outputs used cetacean sightings from several decades and dynamic environmental predictors that used seasonal averages across multiple years. As proxies for prey availability, five predictor environmental variables were selected for the SDM: ocean depth, compound topographic index, sea surface temperature, areas of persistently high chlorophyll-a concentration, and regional chlorophyll-a magnitude. See Gomez et al. (2020) for further details on modelling methods. Persistent patterns over time (between 1975-2015) are the main patterns expected to be captured by these models. Further, SDM results presented here are not the same as species density maps; rather, they portray predicted suitable habitat based on environmental characteristics and sightings data that were not always derived from effort-based surveys. Consequently, the use of these models in marine spatial planning processes should be accompanied by complimentary approaches such as acoustic and visual validation of the SDM results as well as additional monitoring and modeling efforts. Please refer to Gomez et al. (2020) for examples on how to best use these data outputs. Future efforts will focus on using more recent data and improving these models to facilitate the inclusion of cetaceans in marine spatial planning processes that are currently underway. Data sources: Fisheries and Oceans Canada Maritimes region and Newfoundland and Labrador region (Whale Sightings Database, Ocean and Ecosystem Sciences Division, Dartmouth, NS; http://www.inter.dfo-mpo.gc.ca/Maritimes/SABS/popec/sara/Database, MacDonald et. al. 2017) Ocean Biogeographic Information System (OBIS; http://www.iobis.org/), North Atlantic Right Whale Consortium (NARWC; http://www.narwc.org/) Whitehead Lab at Dalhousie University (http://whitelab.biology.dal.ca/) Environment and Climate Change Canada’s (Canadian Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) program (Gjerdrum et al. 2012). References: Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. Fish. Aquat. Sci. 3370: vi + 103 p. http://waves-vagues.dfo-mpo.gc.ca/Library/40869155.pdf Gomez C, Lawson J, Kouwenberg A, Moors-Murphy H, Buren A, Fuentes-Yaco C, Marotte E, Wiersma YF, Wimmer T. 2017. Predicted distribution of whales at risk: identifying priority areas to enhance cetacean monitoring in the Northwest Atlantic Ocean. Endangered Species Research 32:437-458 https://www.int-res.com/abstracts/esr/v32/p437-458/ Gjerdrum, C., D.A. Fifield, and S.I. Wilhelm. 2012. Eastern Canada Seabirds at Sea (ECSAS) standardized protocol for pelagic seabird surveys from moving and stationary platforms. 31 Canadian Wildlife Service Technical Report Series No. 515. Atlantic Region. vi + 37 p. MacDonald, D., Emery, P., Themelis, D., Smedbol, R.K., Harris, L.E., and McCurdy, Q. 2017. Marine mammal and pelagic animal sightings (Whalesightings) database: a user’s guide. Can. Tech. Rep. Fish. Aquat. Sci. 3244: v + 44 p.

  • Categories  

    “4VSW” missions focus on the eastern half of the Scotian Shelf, and occur primarily in March, but sets in both February, and April are also present in the data. These missions use a unique stratification scheme intended to optimize the abundance estimates of cod. Collected data includes total catch in numbers and weights by species. Length frequency data is available for most species, as are the age, sex, maturity and weight information for a subset of the individual animals. Other data such as ageing material, genetic material, and stomach contents are often also collected, but are stored elsewhere. Cite this data as: Clark, D., Emberley, J. Data of Maritimes 4VSW Research Vessel Survey. Published January 2021. Population Ecology Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/a851ce30-e216-4d7d-a29c-05631eef140e

  • Categories  

    This cartography locates the parts of the territory where the standards relating to coastal erosion, prescribed by the Government of Quebec, must apply. Coastal erosion constraint zones include protective strips where various interventions need to be regulated. These areas are intended to be integrated into the planning and development plan of MRCs for territorial planning and land use control, in accordance with the requirements of the Land Use Planning and Urban Development Act (A-19.1, art.5).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**