CSV
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Moored instrument time series data include current velocity, temperature, salinity, oxygen, fluorescence, transmissivity, turbidity, and particle capture of carbon, nitrogen, and silicon. Also included are sediment trap, ice drift and ice draft data. These data were collected by researchers from the Institute of Ocean Sciences, Sidney, BC, from locations ranging from the Beaufort Sea, and across the Canadian Arctic Archipelago to Baffin Bay. The data links below are only a representative sample of the entire collection. If you require more data, please send your request to the data contact.
-
The Coastal Biodiversity Trawl Survey for the Passamaquoddy Bay was conducted annually between July to October from 2009 to 2019. This survey was intended to monitor long-term change in local species presence, habitat utilization, and health. The sampling activities support coastal research in fisheries, aquaculture, marine protected areas, and ecosystem change. Data collected prior to 2013 are generally not recommended for comparative analysis due to changes in vessel, sampling effort, and protocols.
-
PURPOSE: The primary objective of this survey is to obtain an index of the abundance of American lobster (Homarus Americanus) in the Northumberland Strait. This research survey also provides fisheries-independent information for all of the species captured by the trawl. DESCRIPTION: Catch weight, length frequencies, and biological information for crustaceans and fish caught during the annual July-August research vessel trawl survey in Northumberland Strait (NAFO Division 4T). Abundance indices and spatial distribution patterns of commercial and non-commercial crustaceans and other groundfish. PARAMETERS COLLECTED: The full catch is sorted to species, or lowest taxonomic group possible, and weighed. For lobster, carapace length, sex and carapace condition (i.e. stage of moult) are recorded. For female lobster, the presence or absence of eggs is noted and, starting in 2010, the stage of development of the eggs (i.e. new or old) when present was also recorded. Similarly, for crabs, the carapace width, sex and carapace condition (i.e. stage of moult) is recorded as is the presence or absence of eggs (for females). Fish sampling varied over the years but, starting in 2005, length has been recorded for all fish captured. For large catches, the complete catch is sorted and weighed, but sub-sampling, by species, is used for the other measurements. NOTES ON QUALITY CONTROL: Data are checked for irregularities. SAMPLING METHODS: The Northumberland Strait multi-species survey began in 2001 as a random stratified survey and now employs a random selection of sampling sites within the study area. Sampling is completed annually over a 4-week period in July and August. 110 stations are sampled in Northumberland Strait in water depths exceeding 4 m at Lowest Normal Tide. The survey has employed a 286 rockhopper trawl in all years from 2001 to 2018, except in 2010 and 2011 when a Nephrops trawl was used. In 2019, a newly designed trawl (termed the “Northumberland trawl”) was used in addition to the rockhopper trawl. The Northumberland trawl is similar to the rockhopper trawl but with a smaller footgear and smaller mesh sizes. At each station, the trawl is towed for a set period of time (recently 15 minutes with the rockhopper trawl and 10 minutes with the Northumberland trawl). USE LIMITATION: To ensure scientific integrity and appropriate use of the data, we would encourage you to contact the data custodian.
-
The North Shore of the Lower Estuary (Upper North Shore, Quebec) is a productive coastal system where many commercial species of benthic invertebrates are fished in the infralittoral (10-20 m) and circalittoral (20-50 m) zone. However, little data exist on the biodiversity of non-commercial species and the environmental characteristics of the benthic habitat in this area. Two scientific surveys were conducted in 2018 and 2019 to address this knowledge gap by developing a framework of biodiversity and environmental (water column and seafloor) data taking that will be used to determine the baseline state of the benthic ecosystem in this region. Surveys were conducted in 2018 (August 11-14) and 2019 (July 30-August 5) in the Upper North Shore region (between the towns of Forestville and Godbout). Surveys followed a fixed sampling design of eight transects perpendicular to bathymetry with stations at 10 m depth intervals in a bathymetry range of 10-50 m for a total of approximately 40 stations per survey. Specimens were collected with a beam trawl with an opening of 2.8 m. The hauls were made at a target speed of 2 knots and a target duration of 7 minutes. Start and end positions were recorded to calculate the distance traveled on each tow using the geosphere library of R. The average tow distance was approximately 425 m. The area covered at each tow was the product of the trawl opening and the distance traveled. The three files provided (DarwinCore format) are complementary and are linked by the "eventID" key. The "event_information" file includes generic event information, including date and location. The "additional_information_event_and_occurrence" file includes sample size, sampling protocol and sampling effort, among others. The "taxon_occurrence" file includes the taxonomy of the species observed, identified to the species or lowest possible taxonomic level. For abundance and biomass estimates, contact Virginie Roy (virginie.roy@dfo-mpo.gc.ca). For quality controls, all taxonomic names were checked against the World Register of Marine Species (WoRMS) to match recognized standards. The WoRMS match was placed in the "scientificNameID" field of the occurrence file. Special cases were noted in "identificationRemarks" and selected specimens were confirmed using field photos. Data quality checks were performed using the R obistools and worrms libraries. All sampling locations were spatially validated. This project was funded by DFO Coastal Environmental Baseline Program under Canada’s Oceans Protection Plan. This initiative aims to acquire environmental baseline data contributing to the characterization of important coastal areas and to support evidence-based assessments and management decisions for preserving marine ecosystems.
-
Summary The Quebec region of the Department of Fisheries and Oceans (DFO) is responsible for the assessment of several fish and invertebrate stocks exploited in the Estuary and the northern Gulf of St. Lawrence. The commercial catches sampling program is one of the sources of information used to complete these assessments. The data collected by this program, at wharf or at sea, offers among other things the advantage of a relatively large spatio-temporal coverage and provides some of the necessary knowledge to assess the demography and the structure of the exploited populations. This program is implemented by specialized DFO staff whose main mandate is to collect biological data on groundfish, pelagic fish and marine invertebrate species that are commercially exploited in the various marine communities. Data This dataset on the common rock crab (Cancer irroratus) includes the metadata, sample weight, shell width, shell condition and the sex of the specimens measured. This dataset covers the periods of 1990 and 1995 to present. In order to protect the confidentiality of the sources, some informations (such as those concerning the vessel) have been excluded and others (such as the date of capture) have been simplified. Entries where there was only one vessel in a fishing area for a given year were also excluded. Further information including the fishing areas coordinates can be found by clicking on the «Atlantic and Arctic commercial fisheries» and «Fishing areas» links below.
-
PURPOSE: Establishing efficient, non-destructive sampling methods for clam population assessments. DESCRIPTION: In the Gulf of St. Lawrence (GSL) Management Region, clam assessments are uncommon due to limited resources and the labour-intensive nature of sampling clam beds. Furthermore, clam assessments typically rely on destructive sampling that disturbs sediment and removes animals from their habitat. Establishing efficient, non-destructive sampling methods for clam population assessments can reduce the impact of scientific sampling on these habitats and provide for more efficient monitoring. In this study, we tested the idea that visually observing siphon holes on the sediment surface could predict the presence, number, and size of soft-shell clams across different sites in the southern GSL. Siphon holes reasonably predicted the presence, number, and size/biomass of soft-shell clams in most, but not all, sites. Thus, in many habitats in the GSL, siphon holes can be used for population assessments, providing a powerful tool to enhance Science advice to fisheries managers. Data was collected at the following sites: * Maisonnette, Parc Maisonnette, Maisonnette, New Brunswick, Canada * Kouchibouguac, Loggiecroft wharf, Kouchibouguac National Park, New Brunswick, Canada * Shemogue, Amos Point Road, Little Shemogue, New Brunswick, Canada * Powell's Cove, Powell's Point Provincial Park, Little Harbour, Nova Scotia, Canada PARAMETERS COLLECTED: - Clam abundance - Clam biomass (total sample) - Clam size (length, weight) - Siphon hole abundance - Siphon hole size - Siphon hole characterization (i.e., identification of actual clam based on shape) - Seawater temperature - Sediment grain size - Sediment organic content (%) - Sediment relative moisture content (%) NOTES ON QUALITY CONTROL: Original data entry by Jillian Hunt and/or Isabelle Brennan. Data checked and validated prior to analysis by Jeff Clements. Data further checked and validated prior to publication by Amélie Robichaud. PHYSICAL SAMPLE DETAILS: No physical samples retained. - Clam samples returned back to original habitat after measuring and weighing in the field. - Sediment core samples stored in walk-in freezer and discarded after processing and analysis. SAMPLING METHODS: i. Identifying, counting, weighing, and measuring (with calipers) clams ii. Identifying, counting, and measuring (with calipers) clam siphon holes iii. Seawater temperature monitoring via data loggers iv. Sediment grain size, organic content, and moisture content analysis USE LIMITATION: To ensure scientific integrity and appropriate use of the data, we would encourage you to contact the data custodian.
-
Ocean physical conditions in the Maritimes Region in 2019 were characterized by cooler surface temperatures, continued warmer bottom temperatures and weaker stratification compared to recent years. Deep nutrient inventories were lower than normal over most of the region, with the exception of the Cabot Strait section where deep nutrients were near or higher than normal during the spring sampling and associated with record-warm water. Anomalies of surface nutrients were negative across the region, with the exception of positive anomalies observed at the deep shelf and offshore stations of the Louisbourg section. The spring phytoplankton bloom was near or slightly earlier than normal across the Scotian Shelf (SS) with near-normal duration. Peak chlorophyll a concentrations during the spring bloom occurred within a narrow time window across the SS. At Halifax-2 (HL2), the spring bloom was characterized by a high amplitude, and a rapid progression and decline. Plankton community changes persisted in 2019 with lower abundance of large phytoplankton (diatoms), mainly lower-than-normal biomass of zooplankton and abundance of Calanus finmarchicus, and higher-than-normal abundance of non-copepods. Arctic Calanus and warm-shelf copepods showed mixed abundance anomalies in 2019, reversing the pattern of 2018. Above-normal abundances of Oithona atlantica, especially at HL2, suggest a greater influence of offshore waters in recent years. Surface temperature in the Bedford Basin was near normal in 2019 with mainly cooler-than-normal temperatures from January to June and near- or slightly-above-normal temperatures from July to December. Bottom temperature and salinity were below normal in 2019 with near- or slightly-above-normal conditions at the start of the year and progressing toward cooler and fresher water from February to December. Surface and deep nitrate, phosphate and silicate were near or below normal, with surface phosphate reaching a record low in 2019. The 2018 Continuous Plankton Recorder data indicated an annual abundance of diatoms close to normal for the Eastern (ESS) and Western Scotian Shelf (WSS), while the abundance of dinoflagellates and the Phytoplankton Colour Index values were near (WSS) or above (ESS) normal. The annual abundance of Calanus CI-IV was near normal (ESS) or slightly below normal (WSS), while C. finmarchicus CV-VI levels were slightly below (ESS) or below (WSS) normal. The abundance of Calanus glacialis (ESS, WSS) and Para/Pseudocalanus and Limacina spp. (WSS) were lower than normal, while that of coccolithphore (ESS, WSS), and copepod nauplii and foraminifera (ESS) was higher than normal. "
-
This dataset provides 30-year, 50-year, and 100 year return levels for small craft harbours in British Columbia, relative to the mean sea level over 1993-2020. The return levels are derived from coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM).
-
This dataset provides projected 30-year, 50-year, and 100-year return levels for harbours in British Columbia by 2050 and 2100 under a high emission scenario SSP585, relative to the mean sea level over 1993-2020. The return levels are a combination of estimated present extreme sea levels and projected mean sea level rise. The present extreme sea levels are derived from hourly coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM). The projected mean sea level rise is derived from the regional mean sea level rise data of the IPCC 6th Assessment Report under SSP585, adjusted for the local vertical land motion.
-
These datasets provide information pertaining to sediment grain size, porosity, organic content, total carbon and nitrogen concentrations, trace element concentrations, chlorophyll and phaeopigment concentrations, and meiofauna and macrofaunal abundance in Simoom Sound between November, 2000, and February, 2001. Data formatting of files were performed by Meagan Mak. Sutherland et al (2023) covers the benthic component of a broader project investigating potential modification of marine ecosystems by shrimp trawling and trapping on the central coast of British Columbia. Sediment and infaunal samples were collected before and after fishing with commercial fishing gear consisting of otter-trawl, beam-trawl, and trap-lines. Simoom Sound was sampled in November 2000 and February 2001. Tabulated data of sediment characteristics that include sediment grain size, porosity, carbon and nitrogen content, trace-element, and chlorophyll concentrations are presented in this report. In addition, the infaunal data are comprised of both macrofaunal and meiofaunal communities.
Arctic SDI catalogue