FGDB/GDB
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
This data is intended to identify Canadian fresh waters which require additional measures (e.g., ballast water exchange and treatment) prior to release, as described in https://tc.canada.ca/en/marine-transportation/marine-safety/list-canada-s-designated-alternate-ballast-water-exchange-area-fresh-waters-tp-13617e-2021. The data is not intended for navigation purposes. According to Canada’s Ballast Water Regulations, vessels which are managing ballast water to meet the ballast water performance standard cannot release ballast water into fresh waters unless that ballast water was first exchanged in accordance with the ballast water exchange standard. For the purpose of this requirement, Canadian fresh waters are the following: - the waters at the Port of Kitimat and waters in or upstream of the Kitimat Arm, east of a line between Hilton Point and Steel Point; - the waters at the Port of Stewart and waters in or upstream of the Portland Canal, north of a line between Portland Point and Ramsden Point; - the waters of all Fraser River ports that are: -- east of Tilbury Island in the main arm of the Fraser River including Annacis Island and New Westminster docking areas; and -- east of the eastern tip of Mitchell Island in the north arm of Fraser River; - the waters of the Saguenay River ports and waters upstream of L’Anse-Creuse; - the waters of all St. Lawrence River ports and waters west of the east point of Ile d’Orléans including the port of Quebec City; - all Canadian waters of the Great Lakes Basin; and - the waters of Happy Valley-Goose Bay and waters of Lake Melville west of Rabbit Island. Legal Constraints: Users should be aware that the polygons depicting areas requiring additional measures to manage ballast water are intended for illustration only and should not be used for navigational or legal purposes.
-
As part of a scientific assessment of critical habitat for boreal woodland caribou (Environment Canada 2011, see full reference in accompanying documentation), Environment Canada's Landscape Science and Technology Division was tasked with providing detailed anthropogenic disturbance mapping, across known caribou ranges, as of 2015. This data comprises a 5-year update to the mapping of 2008-2010 disturbances, and allows researchers to better understand the attributes that have a known effect on caribou population persistence. The original disturbance mapping was based on 30-metre resolution Landsat-5 imagery from 2008 -2010. The mapping process used in 2010 was repeated using 2015 Landsat imagery to create a nationally consistent, reliable and repeatable geospatial dataset that followed a common methodology. The methods developed were focused on mapping disturbances at a specific point of time, and were not designed to identify the age of disturbances, which can be of particular interest for disturbances that can be considered non-permanent, for example cutblocks. The resultant datasets were used for a caribou resource selection function (habitat modeling) and to assess overall disturbance levels on each caribou ranges. Anthropogenic disturbances within 51 caribou ranges across Canada were mapped. The ranges were defined by individual provinces and territories across Canada. Disturbances were remapped across these ranges using 2015 Landsat-8 satellite imagery to provide the most up-to-date data possible. As with the 2010 mapping project, anthropogenic disturbance was defined as any human-caused disturbance to the natural landscape that could be visually identified from Landsat imagery with 30-metre multi-band imagery at a viewing scale of 1:50,000. A minimum mapping unit MMU of 2 ha (approximately 22 contiguous 30-metre pixels) was selected. Each disturbance feature type was represented in the database by a line or polygon depending on their geometric description. Polygonal disturbances included: cutblocks, mines, reservoirs, built-up areas, well sites, agriculture, oil and gas facilities, as well as unknown features. Linear disturbances included: roads, railways, powerlines, seismic exploration lines, pipelines, dams, air strips, as well as unknown features. For each type of anthropogenic disturbance, a clear description was established (see Appendix 7.2 of the science assessment) to maintain consistency in identifying the various disturbances in the imagery by the different interpreters. Features were only digitized if they were visible in the Landsat imagery at the prescribed viewing scale. A 2nd interpreter quality-control phase was carried out to ensure high quality, complete and consistent data collection. For this 2015 update an additional, separate higher-resolution database was created by repeating the process using 15-metre panchromatic imagery. For the 30-metre database only, the line and poly data were buffered by a 500-metre radius, representing their extended zone of impact upon boreal caribou herds. Additionally, forest fire polygons were merged into the anthropogenic footprint in order to create an overall disturbance footprint. These buffered datasets were used in the calculation of range disturbance levels and for integrated risk assessment analysis.
-
It has long been understood that eelgrass (Zostera marina) is important to waterfowl such as Atlantic Brant (Branta bernicla hrota), Canada Goose (Branta canadensis), American Black Duck (Anas rubripes), Common Goldeneye (Bucephala clangula) and Barrow's Goldeneye (Bucephala islandica). In New Brunswick, eelgrass can be found along the Gulf of St. Lawrence, in protected harbours such as at Neguac Bay, in the province's northeast (47015’N, 65002’W).This dataset contains results from an eelgrass classification for Neguac Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (https://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 126 sites. Two-thirds of these sites were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified:Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 81% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 39 sites that were within the classification area, 27 were correct, 9 were "one-off", and 3 were incorrect [(27 + (9/2))/ 39 = 0.81].
-
Hunting districts as presented in the Compendium of Migratory Bird Hunting Regulations: Quebec https://www.canada.ca/fr/environnement-changement-climatique/services/chasse-oiseaux-migrateurs-gibier/reglementation-resumes-provinciaux-territoriaux/quebec.html These boundaries are presented for information purposes only and have no legal value.
-
The atlas provides printable maps, Web Services and downloadable data files representing seabirds at-sea densities in eastern Canada. The information provided on the open data web site can be used to identify areas where seabirds at sea are found in eastern Canada. However, low survey effort or high variation in some areas introduces uncertainty in the density estimates provided. The data and maps found on the open data web site should therefore be interpreted with an understanding of this uncertainty. Data were collected using ships of opportunity surveys and therefore spatial and seasonal coverage varies considerably. Densities are computed using distance sampling to adjust for variation in detection rates among observers and survey conditions. Depending on conditions, seabirds can be difficult to identify to species level. Therefore, densities at higher taxonomic levels are provided. more details in the document: Atlas_SeabirdsAtSea-OiseauxMarinsEnMer.pdf. By clicking on "View on Map" you will visualize a example of the density measured for all species combined from April to July - 2006-2020. ESRI REST or WMS map services can be added to your web maps or opened directly in your desktop mapping applications. These are alternatives to downloading and provide densities for all taxonomical groups and species as well as survey effort.
-
The water level data comes from the groundwater monitoring network of Alberta (Canadian province). Each well in the observation network is equipped with a hydrostatic pressure transducer and a temperature sensor connected to a data logger. A second pressure transducer located above the water surface allows for adjusting the water level according to atmospheric pressure variations. The time series refers to the level below which the soil is saturated with water at the site and at the time indicated. The water level is expressed in meters above sea level (MASL). The dataset consists of a general description of the observation site including; the identifier, the name, the location, the elevation and a series of numerical values designating the water levels at a defined date and time of measurement.
-
Fisheries and Oceans Canada has conducted a cumulative human impact mapping analysis for Pacific Canada to support ongoing Marine Spatial Planning. Cumulative impact mapping (CIM) combines spatial information on human activities, habitats, and a matrix of vulnerability weights into an intuitive relative ‘cumulative impact score’ that shows where cumulative human impacts are greatest and least. To map cumulative impacts, a recently developed ecosystem vulnerability assessment for Pacific Canadian waters (Murray et al. 2022) was combined with spatial information on thirty-eight (38) different habitat types and forty-five (45) human activities following the methodology from Halpern et al.(2008) and Murray et al. (2015). The cumulative impact map is provided in a 1x1 km grid used for oceans management by Fisheries and Oceans Canada. For further information, please contact the data provider.
-
As part of a scientific assessment of critical habitat for boreal woodland caribou (Environment Canada 2011, see full reference in accompanying documentation), Environment Canada's Landscape Science and Technology Division was tasked with providing detailed anthropogenic disturbance mapping, across known caribou ranges, as of 2010. The attached dataset comprises the second 5-year update (first one in 2015) bringing the data up to 2020. The original disturbance mapping was based on 30-metre resolution Landsat-5 imagery from 2008-2010. Since then, anthropogenic disturbances within 51 caribou ranges across Canada were remapped every five years to create a nationally consistent, reliable and repeatable geospatial dataset that followed a common methodology. The ranges were defined by individual provinces and territories across Canada. The methods developed were focused on mapping disturbances at a specific point of time, and were not designed to identify the age of disturbances, which can be of particular interest for disturbances that can be considered non-permanent, for example cutblocks. The resultant datasets were used for a caribou resource selection function (habitat modeling) and to assess overall disturbance levels on each caribou ranges. As with the 2010 mapping project, anthropogenic disturbance was defined as any human-caused disturbance to the natural landscape that could be visually identified from Landsat 30-metre multi-band imagery at a viewing scale of 1:50,000. The same concept was followed for the 2015 and 2020 disturbance mapping and any additional disturbance features that were observed since the original mapping date, were added. The 2015 database was used as a starting point for the 2020 database. Unlike the previous iteration, features were not removed in the mapping process which was a decision made in the name of time. Interpretation was carried out based on the most recent cloud free imagery available up to mid fall for a given year. Each disturbance feature type was represented in the database by a line or polygon depending on their geometric description. Linear disturbances included: roads, railways, powerlines, seismic exploration lines, pipelines, dams, air strips, as well as unknown features. Polygonal disturbances included: cutblocks, harvest (added in 2020), mines, built-up areas, well sites, agriculture, oil and gas facilities, as well as unknown features. For each type of anthropogenic disturbance, a clear description was established (see Appendix 7.2 of the science assessment) to maintain consistency in identifying the various disturbances in the imagery by the different interpreters. Features were only digitized if they were clearly visible in the Landsat imagery at the prescribed viewing scale. In comparison to the previous mapping protocol, one enhancement to the mapping process in 2020 was the addition of CFS harvest polygons (Ref: NRCan-CFS NTEMS; Wulder 2020) into the database prior to interpretation. This considerably reduced the digitizing time for polygons and accelerated the data collection process. The CFS harvest polygons were checked before inclusion, removing some which had been generated erroneously in their process. A 2nd interpreter quality-control phase was carried out to ensure high quality, complete and consistent data collection. Subsequently, the vector data of individual linear and polygonal disturbances were buffered by a 500-metre radius, representing their extended zone of impact upon boreal caribou herds. Additionally, forest fire polygons for the past forty years (CNFDB 1981-2020) were merged into the buffered anthropogenic footprint in order to create an overall disturbance footprint. These buffered datasets were used in the calculation of range disturbance levels and for integrated risk assessment analysis.
-
GIS compilation of data used to perform the stacked cumulative chance of success (resource potential map) in Open file 8556. Natural Resources Canada (NRCan) has been tasked, under the Marine Conservation Targets (MCT) initiative announced in Budget 2016, with evaluating the petroleum resource potential for areas identified for possible protection as part of the Government of Canada's commitment to conserve 10% of its marine areas by 2020. As part of this initiative, NRCan's Geological Survey of Canada (GSC) conducted a broad regional study of the petroleum potential over the majority of the Magdalen Basin, which is the principal geological basin in the southern Gulf of St. Lawrence. The GSC resource assessment is visually represented by a qualitative petroleum potential map. Disclaimer: A simplified colored version of the map is displayed on the Web Mapping Service (WMS). The correct version is available for download through the Federal Geospatial Platform (FGP) and GEOSCAN.
-
This dataset contains results from an eelgrass classification in Shippagan Harbour, New Brunswick. Derived from a Quickbird satellite image collected on July 27, 2007 at as close to low-tide as possible. Classification was objected-oriented using Definiens software. Data used for accuracy and training was collected along transects using a differential GPS positioned towfish holding sidescan sonar, and a video camera that was later transcribed as XY points to describe eel-grass presence.
Arctic SDI catalogue