Format

FGDB/GDB

638 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 638
  • Categories  

    The Department of National Defence has designated Firing Practice and Exercise Areas off the coasts of Canada. Activities in these areas may include bombing practice from aircraft, air-to-air, air-to-sea or ground firing, and anti-aircraft firing, etc. In Atlantic Canada, the Nova Scotia Area includes sea area employments for sub-surface operations and firing exercises (FIREX). The Gulf of St. Lawrence Area, excluding the French territorial waters of Saint-Pierre et Miquelon, includes sea area employments for sub-surface operations and underwater demolition training. For full details, see the Notices to Mariners, Section F, National Defence Military Notices, available online: https://www.notmar.gc.ca/publications/annual-annuel/section-f/f35-en.pdf. Legal Constraints: Users should be aware that the polygons depicting firing practice and exercise areas are intended for illustration only and should not be used for navigational or legal purposes.

  • Categories  

    Cartographic representations of Fisheries Management Areas (FMA)s in the Atlantic and Arctic Regions. Currently Published Fisheries Management Areas: Capelin Crab Herring Mackerel Salmon, Atlantic Scallop Shrimp Snow Crab Squid Each polygon feature class delineates the coordinates of a different series of FMAs. Shapes have been drafted based on a combination of sources including: the Atlantic Fisheries Regulations, Integrated Fisheries Management Plans, indigenous treaties, the bounds of the Territorial Sea, and other information made public on Fisheries and Oceans websites. Information from Variation orders and Conditions of License were also incorporated. The specific sources used to construct each feature class is listed in its metadata and direct links to public sources are included. The original documentation uses a diverse combination datums, or include coordinates with no listed datum. This data series has been projected into NAD83. Vertices in this dataset may differ from the original source documents to fix slivers, make areas congruent with coastlines, or align with other administrative boundaries. Changes made to the original areas in order to make drafting possible have been highlighted in the comments field in the attribute tables. Lines were first drafted as geodesics and vertices were added to approximate loxodromes using the Construct Geodesic Tool in ArcGIS Pro 2.9.8. As documentation is drafted, additional FMAs will be added to the dataset. Currently drafted FMAs my change and expand into currently unmapped areas as new information is incorporated. The feature classes produced as a part of this data series are cartographic representations of legal documents and are meant to be used for general reference in support of marine planning. Whenever there is a difference between the original written source documentation and this digital representation, the originals should be considered authoritative. Every effort has been made to ensure that these files are as accurate as possible but these feature classes are not intended to be used for navigation, legal interpretation or enforcement.

  • Categories  

    As part of a scientific assessment of critical habitat for boreal woodland caribou (Environment Canada 2011, see full reference in accompanying documentation), Environment Canada's Landscape Science and Technology Division was tasked with providing detailed anthropogenic disturbance mapping, across known caribou ranges, as of 2010. The attached dataset comprises the second 5-year update (first one in 2015) bringing the data up to 2020. The original disturbance mapping was based on 30-metre resolution Landsat-5 imagery from 2008-2010. Since then, anthropogenic disturbances within 51 caribou ranges across Canada were remapped every five years to create a nationally consistent, reliable and repeatable geospatial dataset that followed a common methodology. The ranges were defined by individual provinces and territories across Canada. The methods developed were focused on mapping disturbances at a specific point of time, and were not designed to identify the age of disturbances, which can be of particular interest for disturbances that can be considered non-permanent, for example cutblocks. The resultant datasets were used for a caribou resource selection function (habitat modeling) and to assess overall disturbance levels on each caribou ranges. As with the 2010 mapping project, anthropogenic disturbance was defined as any human-caused disturbance to the natural landscape that could be visually identified from Landsat 30-metre multi-band imagery at a viewing scale of 1:50,000. The same concept was followed for the 2015 and 2020 disturbance mapping and any additional disturbance features that were observed since the original mapping date, were added. The 2015 database was used as a starting point for the 2020 database. Unlike the previous iteration, features were not removed in the mapping process which was a decision made in the name of time. Interpretation was carried out based on the most recent cloud free imagery available up to mid fall for a given year. Each disturbance feature type was represented in the database by a line or polygon depending on their geometric description. Linear disturbances included: roads, railways, powerlines, seismic exploration lines, pipelines, dams, air strips, as well as unknown features. Polygonal disturbances included: cutblocks, harvest (added in 2020), mines, built-up areas, well sites, agriculture, oil and gas facilities, as well as unknown features. For each type of anthropogenic disturbance, a clear description was established (see Appendix 7.2 of the science assessment) to maintain consistency in identifying the various disturbances in the imagery by the different interpreters. Features were only digitized if they were clearly visible in the Landsat imagery at the prescribed viewing scale. In comparison to the previous mapping protocol, one enhancement to the mapping process in 2020 was the addition of CFS harvest polygons (Ref: NRCan-CFS NTEMS; Wulder 2020) into the database prior to interpretation. This considerably reduced the digitizing time for polygons and accelerated the data collection process. The CFS harvest polygons were checked before inclusion, removing some which had been generated erroneously in their process. A 2nd interpreter quality-control phase was carried out to ensure high quality, complete and consistent data collection. Subsequently, the vector data of individual linear and polygonal disturbances were buffered by a 500-metre radius, representing their extended zone of impact upon boreal caribou herds. Additionally, forest fire polygons for the past forty years (CNFDB 1981-2020) were merged into the buffered anthropogenic footprint in order to create an overall disturbance footprint. These buffered datasets were used in the calculation of range disturbance levels and for integrated risk assessment analysis.

  • Categories  

    Points, polylines and polygons where species and features have been found, harvested or detailed. Community Based Coastal Resource Inventory (CCRI) – Fisheries and Oceans Canada in conjunction with several Federal and Provincial agencies created, implemented, and managed a program which set out to develop a coastal resource inventory based on the traditional knowledge of local residents. Through partnerships with the province of Newfoundland and Labrador’s Regional Economic Development (RED) Boards and other community based groups the project assembled a database containing several decade’s worth of local knowledge. The value of the information collected came through individual interviews with people who had extensive knowledge of the immediate geography and resource, having lived, worked and harvested the regions over a lifetime. This project ran from 1996 to 2007.

  • Categories  

    This dataset is part of Environment and Climate Change Canada’s Shoreline Classification and Pre-Spill database. Shoreline classification data has been developed for use by the Environmental Emergencies Program of Environment and Climate Change Canada for environmental protection purposes. Marine and freshwater shorelines are classified according to the character (substrate and form) of the upper intertidal (foreshore) or upper swash zone (Sergy, 2008). This is the area where oil from a spill usually becomes stranded and where treatment or cleanup activities take place. The basic parameter that defines the shoreline type is the material that is present in the intertidal zone. The presence or absence of sediments is a key factor in determining whether oil is stranded on the surface of a substrate or can penetrate and/or be buried. This dataset contains thousands of linear shoreline segments ranging in length from 200 m and 2 km long. The entities represent the location of the segments and their geomorphological description. There exist further fields in the attribute table for this dataset. We are currently working on standardizing our shoreline segmentation datasets and the updated data will soon be uploaded to the catalog. Sergy, G. (2008). The Shoreline Classification Scheme for SCAT and Oil Spill Response in Canada. Proceedings of the 31stArctic and Marine Oil Spill Program Technical Seminar.Environment Canada, Ottawa, ON, Pp. 811-819.

  • Categories  

    This dataset provides geospatial polygon boundaries for marine bivalve shellfish harvest area classification in British Columbia, Canada. These data represent the five classification categories of marine bivalve shellfish harvest areas (Approved; Conditionally Approved; Restricted; Conditionally Restricted; and Prohibited) under the Canadian Shellfish Sanitation Program (CSSP). Data are collected by Environment and Climate Change Canada (ECCC) for the purpose of making applicable classification recommendations on the basis of sanitary and water quality survey results. ECCC recommendations are reviewed and adopted by Regional Interdepartmental Shellfish Committees prior to regulatory implementation by Fisheries and Oceans Canada (DFO). These geographic data are for illustrative purposes only; they show shellfish harvest area classifications when in Open Status. The classification may be superseded at any time by regulatory orders issued by DFO, which place areas in Closed Status, due to conditions such as sewage overflows or elevated biotoxin levels. For further information about the current status and boundary coordinates for areas under Prohibition Order, please contact your local DFO office. This dataset is 'Deprecated'. Please use updated source here. https://open.canada.ca/data/en/dataset/7aef69b5-3aaf-4d50-bb86-083031e6dc47

  • Categories  

    Eelgrass (Zostera marina) is important to waterfowl such as Atlantic Brant (Branta bernicla hrota), Canada Goose (Branta canadensis), American Black Duck (Anas rubripes), Common Goldeneye (Bucephala clangula) and Barrow's Goldeneye (Bucephala islandica). In New Brunswick eelgrass can be found along the Gulf of St. Lawrence, in protected harbours. Within this dataset are the results of eelgrass land-cover classifications using either satellite or aerial photography for seven harbours: Bouctouche (46 30’N, 64 39’W); Miscou (47.90 N, -64.55 W); Neguac (47.25 N, -65.03 W); Richibucto (46.70 N, -64.80 W); Saint-Simon (47.77 N, -64.76 W); Tracadie (47.55 N, -64.88 W); and Cocagne (46.370 N, -64.600 W). Information on each dataset is provided: 1. Bouctouche This dataset contains results from an eelgrass classification for Bouctouche Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 688 sites. Two-thirds of these sites were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 83.7% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 187 sites that were within the classification area, 131 were correct, 51 were "one-off", and 5 were incorrect [(131 + (51/2))/ 187 = 0.837]. 2. Miscou True colour aerial photography at 57 centimetre resolution was collected on August 20th and 24th, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 103 sites. From these sites 70% were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 96.7% of the time (30/31 = 0.967). 3. Neguac This dataset contains results from an eelgrass classification for Neguac Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 126 sites. Two-thirds of these sites were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 81% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 39 sites that were within the classification area, 27 were correct, 9 were "one-off", and 3 were incorrect [(27 + (9/2))/ 39 = 0.81]. 4. Richibucto Eelgrass classification in Richibucto Harbour, New Brunswick. Derived from a Quickbird satellite image collected on August 28, 2007 at as close to low-tide as possible. Quickbird's ground resolution is 2.4 m. Classification was objected-oriented using Definiens software. Accuracy was 81.5%. Data used for accuracy and training was collected along transects using a differential GPS positioned towfish holding sidescan sonar, and a video camera that was later transcribed as XY points to describe eel-grass presence. 5. Saint-Simon An eelgrass distribution map was classified from remotely sensed imagery in Shippagan Harbour, New Brunswick. Derived from a Quickbird satellite image collected on July 27, 2007 at as close to low-tide as possible. Classification was objected-oriented using Definiens software. Data used for accuracy and training was collected along transects using a differential GPS positioned towfish holding sidescan sonar, and a video camera that was later transcribed as XY points to describe eel-grass presence. 6. Tracadie This dataset contains results from an eelgrass classification for Tracadie Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 101 sites. Approximately two-thirds of these sites were used to assist in image classification, while the remainder was used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 79.3% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 29 sites that were within the classification area, 18 were correct, 10 were "one-off", and 1 was incorrect [(18 + (10/2))/ 29 = 0.793]. 7. Cocagne Visible orthorectified aerial photography was used to classify polygons containing eelgrass in Cocagne Harbour. Field data for image training and validation were collected along transects in summer 2008 using a dGPS positioned towfish holding sidescan sonar and a video camera that was later transcribed as XY geographic points to describe eelgrass presence and a qualitative description of density. The area was flown for photography on September 24, 2008. eCognition Developer 8 software was used to segment the imagery, essentially polygons. Polygons were then classified manually for the presence of eelgrass. Using field data revealed eelgrass presence to be mapped correctly 87.2% of the time.

  • Categories  

    As part of a scientific assessment of critical habitat for boreal woodland caribou (Environment Canada 2011, see full reference in accompanying documentation), Environment Canada's Landscape Science and Technology Division was tasked with providing detailed anthropogenic disturbance mapping, across known caribou ranges, as of 2015. This data comprises a 5-year update to the mapping of 2008-2010 disturbances, and allows researchers to better understand the attributes that have a known effect on caribou population persistence. The original disturbance mapping was based on 30-metre resolution Landsat-5 imagery from 2008 -2010. The mapping process used in 2010 was repeated using 2015 Landsat imagery to create a nationally consistent, reliable and repeatable geospatial dataset that followed a common methodology. The methods developed were focused on mapping disturbances at a specific point of time, and were not designed to identify the age of disturbances, which can be of particular interest for disturbances that can be considered non-permanent, for example cutblocks. The resultant datasets were used for a caribou resource selection function (habitat modeling) and to assess overall disturbance levels on each caribou ranges. Anthropogenic disturbances within 51 caribou ranges across Canada were mapped. The ranges were defined by individual provinces and territories across Canada. Disturbances were remapped across these ranges using 2015 Landsat-8 satellite imagery to provide the most up-to-date data possible. As with the 2010 mapping project, anthropogenic disturbance was defined as any human-caused disturbance to the natural landscape that could be visually identified from Landsat imagery with 30-metre multi-band imagery at a viewing scale of 1:50,000. A minimum mapping unit MMU of 2 ha (approximately 22 contiguous 30-metre pixels) was selected. Each disturbance feature type was represented in the database by a line or polygon depending on their geometric description. Polygonal disturbances included: cutblocks, mines, reservoirs, built-up areas, well sites, agriculture, oil and gas facilities, as well as unknown features. Linear disturbances included: roads, railways, powerlines, seismic exploration lines, pipelines, dams, air strips, as well as unknown features. For each type of anthropogenic disturbance, a clear description was established (see Appendix 7.2 of the science assessment) to maintain consistency in identifying the various disturbances in the imagery by the different interpreters. Features were only digitized if they were visible in the Landsat imagery at the prescribed viewing scale. A 2nd interpreter quality-control phase was carried out to ensure high quality, complete and consistent data collection. For this 2015 update an additional, separate higher-resolution database was created by repeating the process using 15-metre panchromatic imagery. For the 30-metre database only, the line and poly data were buffered by a 500-metre radius, representing their extended zone of impact upon boreal caribou herds. Additionally, forest fire polygons were merged into the anthropogenic footprint in order to create an overall disturbance footprint. These buffered datasets were used in the calculation of range disturbance levels and for integrated risk assessment analysis.

  • This collection holds the layers used for the "Map of Upper Intertidal shoreline segmentation with Shoreline Cleanup Assessment Technique (SCAT) classification", a WMS service maintained by ECCC. The segmentation covers shorelines for Northern Canada, the North coast of British Columbia, as well as Ontario, Quebec, and Atlantic regions.

  • Categories  

    In 2021, the Canada Coast Guard (CCG) and Fisheries and Oceans Canada (DFO) updated its administrative boundaries following the creation a new Arctic region.There are now 7 administrative regions in DFO (Pacific, Arctic, Ontario and Prairie, Quebec, Gulf, Maritimes, Newfoundland and Labrador). DFO and Coast Guard Arctic Regions developed these regions in partnership with the people they serve; this important decision will lead to stronger programs and services to better meet the unique needs of our Arctic communities.DFO and CCG operations and research cover Canada's land and waters to the international boundaries (EEZ) and are in no way limited to the boundaries drawn in the map.