FGDB/GDB
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The water level data comes from the groundwater monitoring network of Prince Edward Island (Canadian province). Each well in the observation network is equipped with a hydrostatic pressure transducer and a temperature sensor connected to a data logger. A second pressure transducer located above the water surface allows for adjusting the water level according to atmospheric pressure variations. The time series refers to the level below which the soil is saturated with water at the site and at the time indicated. The water level is expressed in meters above sea level (MASL). The dataset consists of a general description of the observation site including; the identifier, the name, the location, the elevation and a series of numerical values designating the water levels at a defined date and time of measurement.
-
Description: Data on recreational boating are needed for marine spatial planning initiatives in British Columbia (BC). Vessel traffic data are typically obtained by analyzing automatic identification system (AIS) vessel tracking data, but recreational vessels are often omitted or underrepresented in AIS data because they are not required to carry AIS tracking devices. Transport Canada’s National Aerial Surveillance Program (NASP) conducted aerial surveys to collect information on recreational vessels along several sections of the BC coast between 2018 and 2022. Recreational vessel sightings were modeled against predictor variables (e.g., distance to shore, water depth, distance to, and density of marinas) to predict the number of recreational vessels along coastal waters of BC. The files included here are: --A Geodatabase (‘Recreational_Boating_Data_Model’), which includes: (1) recreational vessel sightings data collected by NASP in BC and used in the recreational vessel traffic model (‘Recreational_Vessels_PointData_BC’); (2) aerial survey effort (or number of aerial surveys) raster dataset (‘surveyeffort’); and (3) a vector grid dataset (2.5 km resolution) containing the predicted number of recreational vessels per cell and predictor variables (‘Recreational_Boating_Model_Results_BC). --Scripts folder which includes R Markdown file with R code to run the modelling analysis (‘Recreational_Boating_Model_R_Script’) and data used to run the code. Methods: Data on recreational vessels were collected by NASP during planned aerial surveys along pre-determined routes along the BC coast from 2018 to 2022. Data on non-AIS recreational vessels were collected using video cameras onboard the aircraft, and data on AIS recreational vessels using an AIS receiver also onboard the aircraft. Recreational boating predictors explored were: water depth, distance to shore, distance to marinas, density of marinas, latitude, and longitude. Recreational vessel traffic models were fitted using Generalized Linear Models (GLM) R packages and libraries used here include: AED (Roman Lustrik, 2021) and MASS (Venables, W. N., Ripley, 2002), pscl package (Zeileis, Kleiber, and Jackman, 2008) for zeroinfl() and hurdle() function. Final model was selected based on the Akaike’s information criterion (AIC) and the Bayes’ information criterion (BIC). An R Markdown file with code use to run this analysis is included in the data package in a folder called Script. Spatial Predictive Model: The selected model, ZINB, consist of two parts: one with a binomial process that predicts the probability of encountering a recreational vessel, and a second part that predicts the number of recreational vessels via a count model. The closer to shore and to marinas, and the higher the density of marinas, the higher the predicted number of recreational vessels. The probability of encountering recreational vessels is driven by water depth and distance to shore. For more information on methodology, consult metadata pdf available with the Open Data record. References: Serra-Sogas, N. et al. 2021. Using aerial surveys to fill gaps in AIS vessel traffic data to inform threat assessments, vessel management and planning. Marine Policy 133: 104765. https://doi.org/10.1016/j.marpol.2021.104765 Data Sources: Recreational vessel sightings and survey effort: Data collected by NASP and analyzed by Norma Serra to extract vessel information and survey effort (more information on how this data was analyzed see SerraSogas et al, 2021). Bathymetry data for the whole BC coast and only waters within the Canadian EEZ was provided by DFO – Science (Selina Agbayani). The data layer was presented as a raster file of 100 meters resolution. Coastline dataset used to estimate distance to shore and to clip grid was provided by DFO – Science (Selina Agbayani), created by David Williams and Yuriko Hashimoto (DFO – Oceans). Marinas dataset was provided by DFO – Science (Selina Agbayani), created by Josie Iacarella (DFO – Science). This dataset includes large and medium size marinas and fishing lodges. The data can be downloaded from here: Floating Structures in the Pacific Northwest - Open Government Portal (https://open.canada.ca/data/en/dataset/049770ef-6cb3-44ee-afc8-5d77d6200a12) Uncertainties: Model results are based on recreational vessels sighted by NASP and their related predictor variables and not always might reflect real-world vessel distributions. Any biases caused by the opportunistic nature of the NASP surveys were minimized by using survey effort as an offset variable.
-
The atlas provides printable maps, Web Services and downloadable data files representing seabirds at-sea densities in eastern Canada. The information provided on the open data web site can be used to identify areas where seabirds at sea are found in eastern Canada. However, low survey effort or high variation in some areas introduces uncertainty in the density estimates provided. The data and maps found on the open data web site should therefore be interpreted with an understanding of this uncertainty. Data were collected using ships of opportunity surveys and therefore spatial and seasonal coverage varies considerably. Densities are computed using distance sampling to adjust for variation in detection rates among observers and survey conditions. Depending on conditions, seabirds can be difficult to identify to species level. Therefore, densities at higher taxonomic levels are provided. more details in the document: Atlas_SeabirdsAtSea-OiseauxMarinsEnMer.pdf. By clicking on "View on Map" you will visualize a example of the density measured for all species combined from April to July - 2006-2020. ESRI REST or WMS map services can be added to your web maps or opened directly in your desktop mapping applications. These are alternatives to downloading and provide densities for all taxonomical groups and species as well as survey effort.
-
In 2021, the Canada Coast Guard (CCG) and Fisheries and Oceans Canada (DFO) updated its administrative boundaries following the creation a new Arctic region.There are now 7 administrative regions in DFO (Pacific, Arctic, Ontario and Prairie, Quebec, Gulf, Maritimes, Newfoundland and Labrador). DFO and Coast Guard Arctic Regions developed these regions in partnership with the people they serve; this important decision will lead to stronger programs and services to better meet the unique needs of our Arctic communities.DFO and CCG operations and research cover Canada's land and waters to the international boundaries (EEZ) and are in no way limited to the boundaries drawn in the map.
-
This dataset provides marine bacteriological water quality data for bivalve shellfish harvest areas in Quebec, Canada. Shellfish harvest area water temperature and salinity data are also provided as adjuncts to the interpretation of fecal coliform density data. The latter is the indicator of fecal matter contamination monitored annually by Environment and Climate Change Canada (ECCC) within the framework of the Canadian Shellfish Sanitation Program (CSSP). The geospatial positions of the sampling sites are also provided. These data are collected by ECCC for the purpose of making recommendations on the classification of shellfish harvest area waters. ECCC recommendations are reviewed and adopted by Regional Interdepartmental Shellfish Committees prior to regulatory implementation by Fisheries and Oceans Canada (DFO). This dataset is 'Deprecated'. Please use updated source here. https://open.canada.ca/data/en/dataset/6417332a-7f37-49bd-8be9-ce0402deed2a
-
This point layer shows the locations of places of interest to Parks Canada, visitors, employees, or local residents. These are points that are not already mapped as Parks Canada facilities or components of facilties. Data is not necessarily complete - updates will occur weekly.
-
Past wind directions are mapped from stabilized sand dunes in Canada and the northern United States. The map shows the near-surface wind directions responsible for transporting sand when the dunes were active. The directions were mapped by interpreting the orientation of parabolic dunes from open-sourced Lidar (light detection and ranging) derived digital terrain models. The map also shows new dune areas that add to the existing knowledge of dune fields in North America. The interpreted wind directions provide insight into the past atmospheric circulation patterns that occurred during the deglaciation of North America and the transition to modern circulation patterns that occur today.
-
The water level data comes from the groundwater monitoring network of Alberta (Canadian province). Each well in the observation network is equipped with a hydrostatic pressure transducer and a temperature sensor connected to a data logger. A second pressure transducer located above the water surface allows for adjusting the water level according to atmospheric pressure variations. The time series refers to the level below which the soil is saturated with water at the site and at the time indicated. The water level is expressed in meters above sea level (MASL). The dataset consists of a general description of the observation site including; the identifier, the name, the location, the elevation and a series of numerical values designating the water levels at a defined date and time of measurement.
-
This data is intended to identify Canadian fresh waters which require additional measures (e.g., ballast water exchange and treatment) prior to release, as described in https://tc.canada.ca/en/marine-transportation/marine-safety/list-canada-s-designated-alternate-ballast-water-exchange-area-fresh-waters-tp-13617e-2021. The data is not intended for navigation purposes. According to Canada’s Ballast Water Regulations, vessels which are managing ballast water to meet the ballast water performance standard cannot release ballast water into fresh waters unless that ballast water was first exchanged in accordance with the ballast water exchange standard. For the purpose of this requirement, Canadian fresh waters are the following: - the waters at the Port of Kitimat and waters in or upstream of the Kitimat Arm, east of a line between Hilton Point and Steel Point; - the waters at the Port of Stewart and waters in or upstream of the Portland Canal, north of a line between Portland Point and Ramsden Point; - the waters of all Fraser River ports that are: -- east of Tilbury Island in the main arm of the Fraser River including Annacis Island and New Westminster docking areas; and -- east of the eastern tip of Mitchell Island in the north arm of Fraser River; - the waters of the Saguenay River ports and waters upstream of L’Anse-Creuse; - the waters of all St. Lawrence River ports and waters west of the east point of Ile d’Orléans including the port of Quebec City; - all Canadian waters of the Great Lakes Basin; and - the waters of Happy Valley-Goose Bay and waters of Lake Melville west of Rabbit Island. Legal Constraints: Users should be aware that the polygons depicting areas requiring additional measures to manage ballast water are intended for illustration only and should not be used for navigational or legal purposes.
-
Proxied dataset of inshore lobster commercial fishing for 2012 - 2021 in the Newfoundland and Labrador region. Only lobster harvested from the Newfoundland and Labrador region are included, based on species sought. Commercial data for the inshore lobster fishery does not require a set of coordinates be provided for catch records. With zero georeferenced inshore lobster records, the inshore lobster fishery leaves a major data gap in one of Newfoundland and Labradors largest fisheries. The Gulf region created a lobster proxy mapping tool, which associated each commercial lobster record with the most likely 10km2 hexagon grid cell based on a number of weighted variables. The tool was adopted by the Newfoundland and Labrador region and altered to work with its own variables which include human use, habitat, accessibility, area/location, home port distance, traditional ecological knowledge and depth. Each hexagon represents the summed total weight of all records associated with a particular hexagon. The best available commercial data used in this model is derived from landings data and may not include catches that have resulted in cash/wharf sales. As a result, there are some areas of Newfoundland and Labrador that may be under represented in this dataset where wharf sales may be high. Therefore, this dataset should be viewed as a general estimation on lobster harvesting patterns within Newfoundland and Labrador.
Arctic SDI catalogue