Format

FGDB/GDB

639 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 639
  • Categories  

    The Bedrock Index provides a spatial record of the location of all Bedrock maps published by the Geological Survey of Canada and hosted on Geoscan. The index has three "series" of maps; CGM, A series, and preliminary maps. In cases where there have been multiple editions of a map, the most recent record is reported in the Bedrock Index attribute table. Maps published in Open File documents are not recorded in the bedrock index. The "A" series maps were produced from 1909 to 2010 and have been replaced by the CGM (Canadian Geoscience Maps) series. CGM maps began production in 2010 and are still being published. Preliminary maps were published from 1941 to 2021.

  • Categories  

    In 2021, the Canada Coast Guard (CCG) and Fisheries and Oceans Canada updated its administrative boundaries following the creation a new Arctic region. There are now 4 administrative regions in CCG (Western, Arctic, Central and Atlantic). DFO and Coast Guard Arctic Regions developed these regions in partnership with the people they serve; this important decision will lead to stronger programs and services to better meet the unique needs of our Arctic communities. DFO and CCG operations and research cover Canada's land and waters to the international boundaries (EEZ) and are in no way limited to the boundaries drawn in the map.

  • Categories  

    Dataset of species/gear type commercial fisheries from 2012 to 2021 in the Eastern Canada Regions. Only fish harvested from the NL, Maritimes, Gulf, Quebec and Eastern Arctic regions are included (Species Sought). The data was obtained from Statistical Services, Fisheries and Oceans Canada (DFO) and consists of commercial species/gear type landings data from 2012 to 2021 taken from Northwest Atlantic Fisheries Organization (NAFO) Subareas 0, 2, 3, 4 and 5 and fished in the NL, Maritimes, Gulf, Quebec and Eastern Arctic regions. The layer was created by overlaying a 2 minute hexagonal grid (approx. 10km2 cell) on species/gear type commercial fisheries point data and summing the total landings by weight reported for each cell over the ten year period. Therefore, the value of each grid cell is equal to the total species/gear type landings in kg from 2012 to 2021 for the area, and may represent many fishing events from several vessels over the ten year period. All landings are from Canadian vessels greater than 35-ft, and does not include information pertaining to international fishing vessels (i.e., St. Pierre). Individuals should exercise caution when interpreting this data. Data has not been altered and is mapped from the original logbook entry for each record prior to amalgamation. Data may contain errors such as inaccurate or nonviable coordinates, landed weights and/or species identification. For example, cases of fishing events reported in a NAFO Division with corresponding coordinates falling outside that particular NAFO Division or fishing events which appear to be located on a land mass due to rounding errors in the original entries. Such cases were excluded from the dataset. Only one location is given for each fishing event; therefore, a fishing activity that would normally cover a large area (i.e., trawling) is only shown in a single location. Some species may not include all records or locations where activity is taking place due to regional differences in permissions for mapping, or because the fishery is only partially georeferenced (e.g. Lobster). The locations/areas shown should only be used as an estimation of fishing intensity and a general guide of where particular species/gear type fishing occurs. This dataset has been privacy screened to comply with the Government of Canada's privacy policy. Privacy assessments were conducted to identify NAFO unit areas containing data with less than five vessel IDs, license IDs and fisher IDs. If this threshold was not met, catch weight locations have been withheld from these statistical areas to protect the identity or activity of individual vessels or companies. In some instances, permissions were obtained to map species or gears with a limited number of vessels, licenses, or fisher ids. The withheld areas are indicated by the unit area that has been removed and given a weight of -9999.

  • Categories  

    Fisheries and Oceans Canada has conducted a cumulative human impact mapping analysis for Pacific Canada to support ongoing Marine Spatial Planning. Cumulative impact mapping (CIM) combines spatial information on human activities, habitats, and a matrix of vulnerability weights into an intuitive relative ‘cumulative impact score’ that shows where cumulative human impacts are greatest and least. To map cumulative impacts, a recently developed ecosystem vulnerability assessment for Pacific Canadian waters (Murray et al. 2022) was combined with spatial information on thirty-eight (38) different habitat types and forty-five (45) human activities following the methodology from Halpern et al.(2008) and Murray et al. (2015). The cumulative impact map is provided in a 1x1 km grid used for oceans management by Fisheries and Oceans Canada. For further information, please contact the data provider.

  • Categories  

    A revised qualitative assessment of the hydrocarbon resource potential is presented for the Hudson Bay sedimentary basin that underlies Hudson Bay and adjacent onshore areas of Ontario, Manitoba, and Nunavut. The Hudson Basin is a large intracratonic sedimentary basin thatpreserves dominantly Ordovician to Devonian aged limestone and evaporite strata. Maximum preserved sediment thickness is about 2.5 km. Source rock is the petroleum system element that has the lowest chance of success; the potential source rock is thin, may be discontinuous, and the thin sedimentarycover may not have been sufficient to achieve the temperatures required to generate and expel oil from a source rock over much of the basin. The highest potential is in the center of the basin, where the hydrocarbon potential is considered amp;lt;'Mediumamp;gt;'. Hydrocarbon potential decreasestowards the edges of the basin due to fewer plays being present, and thinner strata reduce the chance of oil generation and expulsion. Quantitative hydrocarbon assessment considers seven plays. Input parameters for field size and field density (per unit area) are based on analog Michigan, Williston,and Illinois intracratonic sedimentary basins that are about the same age and that had similar depositional settings to Hudson Basin. Basin-wide play and local prospect chances of success were assigned based on local geological conditions in Hudson Bay. Each of the seven plays were analyzed in Roseand Associates PlayRA software, which performs a Monte Carlo simulation using the local chance of success matrix and field size and prospect numbers estimated from analog basins. Hudson sedimentary basin has a mean estimate of 67.3 million recoverable barrels of oil equivalent and a 10% chance ofhaving 202.2 or more million barrels of recoverable oil equivalent. The mean chance for the largest expected pool is about 15 million recoverable barrels of oil equivalent (MMBOE), and there is only a 10% chance of there being a field larger than 23.2 MMBOE recoverable. The small expected fieldsizes are based on the large analog data set from Michigan, Williston and Illinois basins, and are due to the geological conditions that create the traps. The small size of the largest expected field, the low chance of exploration success, and the small overall resource make it unlikely that there are any economically recoverable hydrocarbons in the Hudson Basin in the foreseeable future. The Southampton Island area of interest includes 93 087 km2 of nearshore waters around Southampton Island and Chesterfield Inlet in the Kivalliq Region of Nunavut. Of the total resource estimated for Hudson Bay, 14 million barrels are apportioned to the Southampton Island Area of Interest.

  • Categories  

    This dataset provides marine bacteriological water quality data for bivalve shellfish harvest areas in Newfoundland and Labrador, Canada. Shellfish harvest area water temperature and salinity data are also provided as adjuncts to the interpretation of fecal coliform density data. The latter is the indicator of fecal matter contamination monitored annually by Environment and Climate Change Canada (ECCC) within the framework of the Canadian Shellfish Sanitation Program (CSSP). The geospatial positions of the sampling sites are also provided. These data are collected by ECCC for the purpose of making recommendations on the classification of shellfish harvest area waters. ECCC recommendations are reviewed and adopted by Regional Interdepartmental Shellfish Committees prior to regulatory implementation by Fisheries and Oceans Canada (DFO). This dataset is 'Deprecated'. Please use updated source here. https://open.canada.ca/data/en/dataset/6417332a-7f37-49bd-8be9-ce0402deed2a

  • Categories  

    This dataset provides marine bacteriological water quality data for bivalve shellfish harvest areas in Prince Edward Island, Canada. Shellfish harvest area water temperature and salinity data are also provided as adjuncts to the interpretation of fecal coliform density data. The latter is the indicator of fecal matter contamination monitored annually by Environment and Climate Change Canada (ECCC) within the framework of the Canadian Shellfish Sanitation Program (CSSP). The geospatial positions of the sampling sites are also provided. These data are collected by ECCC for the purpose of making recommendations on the classification of shellfish harvest area waters. ECCC recommendations are reviewed and adopted by Regional Interdepartmental Shellfish Committees prior to regulatory implementation by Fisheries and Oceans Canada (DFO). This dataset is 'Deprecated'. Please use updated source here. https://open.canada.ca/data/en/dataset/6417332a-7f37-49bd-8be9-ce0402deed2a

  • Categories  

    The atlas provides printable maps, Web Services and downloadable data files representing seabirds at-sea densities in eastern Canada. The information provided on the open data web site can be used to identify areas where seabirds at sea are found in eastern Canada. However, low survey effort or high variation in some areas introduces uncertainty in the density estimates provided. The data and maps found on the open data web site should therefore be interpreted with an understanding of this uncertainty. Data were collected using ships of opportunity surveys and therefore spatial and seasonal coverage varies considerably. Densities are computed using distance sampling to adjust for variation in detection rates among observers and survey conditions. Depending on conditions, seabirds can be difficult to identify to species level. Therefore, densities at higher taxonomic levels are provided. more details in the document: Atlas_SeabirdsAtSea-OiseauxMarinsEnMer.pdf. By clicking on "View on Map" you will visualize a example of the density measured for all species combined from April to July - 2006-2020. ESRI REST or WMS map services can be added to your web maps or opened directly in your desktop mapping applications. These are alternatives to downloading and provide densities for all taxonomical groups and species as well as survey effort.

  • Categories  

    This dataset provides geospatial polygon boundaries for marine bivalve shellfish harvest area classification in British Columbia, Canada. These data represent the five classification categories of marine bivalve shellfish harvest areas (Approved; Conditionally Approved; Restricted; Conditionally Restricted; and Prohibited) under the Canadian Shellfish Sanitation Program (CSSP). Data are collected by Environment and Climate Change Canada (ECCC) for the purpose of making applicable classification recommendations on the basis of sanitary and water quality survey results. ECCC recommendations are reviewed and adopted by Regional Interdepartmental Shellfish Committees prior to regulatory implementation by Fisheries and Oceans Canada (DFO). These geographic data are for illustrative purposes only; they show shellfish harvest area classifications when in Open Status. The classification may be superseded at any time by regulatory orders issued by DFO, which place areas in Closed Status, due to conditions such as sewage overflows or elevated biotoxin levels. For further information about the current status and boundary coordinates for areas under Prohibition Order, please contact your local DFO office. This dataset is 'Deprecated'. Please use updated source here. https://open.canada.ca/data/en/dataset/7aef69b5-3aaf-4d50-bb86-083031e6dc47

  • Categories  

    This dataset contains results from an eelgrass classification for Bouctouche Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 688 sites. Two-thirds of these sites were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 83.7% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 187 sites that were within the classification area, 131 were correct, 51 were "one-off", and 5 were incorrect [(131 + (51/2))/ 187 = 0.837].