RI_623
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
-
Level below which soil or rock is saturated with water, in the well and at the time the level has been measured, expressed in m above the sea level. Groundwater depth is measured on the field, using a water level meters. The depth is then subtracted from the elevation of the measurement site to obtain the water level elevation. The dataset is a general description of the measurement site including location and well elevation. It features a series of points of the surface elevation of the groundwater body.
-
This series includes maps of projected change in mean precipitation based on CMIP5 multi-model ensemble results for RCP2.6, RCP4.5 and RCP8.5, expressed as a percentage (%) of mean precipitation in the reference period. The median projected change across the ensemble of CMIP5 climate models is shown. Maps are provided for three time periods: 2016-2035, 2046-2065 and 2081-2100. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.
-
LiDAR data was collected using LSI's proprietary Helix LiDAR system - Novatel GPS and SPANS inertial unit, coupled to a Riegl Q560 digital waveform ranging laser and mounted in a Cessna 185 aircraft. LiDAR was collected at 600m AGL, and a ground speed of 160km/h. Original data was in an ASCII XYZ coordinate format.
-
Description: Seasonal mean dissolved inorganic carbon concentration from the British Columbia continental margin model (BCCM) were averaged over the 1981 to 2010 period to create seasonal mean climatology of the Canadian Pacific Exclusive Economic Zone. Methods: Dissolved inorganic carbon concentrations at up to forty-six linearly interpolated vertical levels from surface to 2400 m and at the sea bottom are included. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. The data available here contain raster layers of seasonal dissolved inorganic carbon concentration climatology for the Canadian Pacific Exclusive Economic Zone at 3 km spatial resolution and 47 vertical levels. Uncertainties: Model results have been extensively evaluated against observations (e.g. altimetry, CTD and nutrient profiles, observed geostrophic currents), which showed the model can reproduce with reasonable accuracy the main oceanographic features of the region including salient features of the seasonal cycle and the vertical and cross-shore gradient of water properties. However, the model resolution is too coarse to allow for an adequate representation of inlets, nearshore areas, and the Strait of Georgia.
-
Collection of monitoring products of river ice roughness from current and past winter seasons throughout Canada as monitored by Natural Resources Canada using satellite imagery. This collection of cartographic products regroups river ice state monitoring products and their associated footprints. Three visualization timeframes are available: - **[Active Monitoring of River Ice in Canada](https://open.canada.ca/data/en/dataset/7b210c58-2fc7-47c5-8b8a-2605c77d725c)** - **[River Ice in Canada - Current](https://open.canada.ca/data/en/dataset/8ca6f047-ddef-43d7-81c2-47654f4c69bd)** - **[River Ice in Canada - Archive](https://open.canada.ca/data/en/dataset/5e6b40bf-299f-4e05-87c8-d10b9c8210f9)**
-
In 1949 a magnitude 8.1 earthquake occurred on the Queen Charlotte Fault, off the west coast of the Haida Gwaii archipelago. This magnitude 8.0 scenario along the Queen Charlotte Fault is slightly different and closer to population centres than the magnitude 7.8 earthquake that occurred in 2012.
-
Aquatic bird eggs are being collected for contaminants analysis. Egg collections in the Peace-Athabasca Delta area support Parks Canada’s activities at Wood Buffalo National Park and the multi-stakeholder Peace-Athabasca Ecosystem Monitoring Program. This monitoring activity employs repeated censuses of birds and builds on initial egg collections made in 2009 from Egg Island (Lake Athabasca) and Wood Buffalo National Park, with the goal of evaluating contaminant burdens, contaminant sources and changes in sources through time. Egg samples are collected from colonial waterbirds California Gulls (Larus californicus), Herring Gulls (Larus argentatus), Ring-billed Gulls (Larus delawarensis), Caspian Terns (Hydroprogne caspia) and Common Terns (Sterna hirundo) and insectivorous birds Bank Swallows (Riparia riparia), Cliff Swallows (Petrochelidon pyrrhonota) and Tree Swallows (Tachycineta bicolor) to monitor health and contaminant levels of aquatic and terrestrial birds in the oil sands region and in reference areas. The samples collected are analysed for oil sands-related contaminants including polycyclic aromatic hydrocarbons (PAHs) and metals such as mercury (Hg) and arsenic (As).
-
Crop/Corn Heat Units (CHU) is a temperature-based index often used by farmers and agricultural researchers to estimate whether the climate is warm enough to grow corn. Daily crop heat units are calculated from minimum and maximum temperatures with separate calculations for day and night. The daytime relationship sets the minimum at 10 C for growth up to a maximum of 30 C, beyond which growth slows. These values are calculated across Canada in 10x10 km cells.
-
The impact of climatic variability on the environment is of great importance to the agricultural sector in Canada. Monitoring the impacts on water supplies, soil degradation and agricultural production is essential to the preparedness of the region in dealing with possible drought and other agroclimate risks. Derived normal climate data represent 30-year averages (1961-1990, 1971-2000, 1981-2010, 1991-2020) of climate conditions observed at a particular location. The derived normal climate data represents 30-year averages or “normals” for precipitation, temperature, growing degree days, crop heat units, frost, and dry spells. These normal trends are key to understanding agroclimate risks in Canada. These normal can be used as a baseline to compare against current conditions, and are particularly useful for monitoring drought risk.
-
Monthly 30-year Average Minimum Temperature represents the average monthly minimum temperature calculated at a given location averaged across a 30 year period (1961-1991, 1971-2000, 1981-2010, 1991-2020). These values are calculated across Canada in 10x10 km cells.
Arctic SDI catalogue