RI_623
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
-
In September 1732 a damaging earthquake occurred immediately beneath the Island of Montréal. This scenario visualizes the effects of that event if it occurred today with a magnitude of 5.0, and represents a strong ground shaking event that could strike Montréal.
-
The Blended Index (BI) is a model which employs multiple potential indicators of drought and excess moisture, such as the Palmer drought index, rolling precipitation amounts and soil moisture, and combines them into a weighted, normalized value between 0 and 100. The inputs and weights used in this model are subject to change periodically as it is optimized to best represent extent, duration and severity of impactful weather conditions. The blended index is deployed as two variations; short term (st) focusing on 1 to 3 months, and long term (lt) focusing on 6 months to 5 years.
-
In 1997, a magnitude 4.6 earthquake occurred 3 to 4 km beneath the Strait of Georgia. This scenario visualizes the effects of that event if it had a magnitude of 7.0, and represents a strong ground shaking event that could strike Metro Vancouver.
-
Description: Seasonal mean dissolved inorganic carbon concentration from the British Columbia continental margin model (BCCM) were averaged over the 1981 to 2010 period to create seasonal mean climatology of the Canadian Pacific Exclusive Economic Zone. Methods: Dissolved inorganic carbon concentrations at up to forty-six linearly interpolated vertical levels from surface to 2400 m and at the sea bottom are included. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. The data available here contain raster layers of seasonal dissolved inorganic carbon concentration climatology for the Canadian Pacific Exclusive Economic Zone at 3 km spatial resolution and 47 vertical levels. Uncertainties: Model results have been extensively evaluated against observations (e.g. altimetry, CTD and nutrient profiles, observed geostrophic currents), which showed the model can reproduce with reasonable accuracy the main oceanographic features of the region including salient features of the seasonal cycle and the vertical and cross-shore gradient of water properties. However, the model resolution is too coarse to allow for an adequate representation of inlets, nearshore areas, and the Strait of Georgia.
-
Catch, effort, location (latitude, longitude), relative abundance indices, and associated biological data from groundfish multi-species bottom trawl surveys in Queen Charlotte Sound (QCS), Hecate Strait (HS), West Coast Vancouver Island (WCVI), West Coast Haida Gwaii (WCHG) and the Strait of Georgia (SOG), British Columbia. Introduction This is a set of long-term and coordinated surveys that together cover the continental shelf and upper slope of most of the British Columbia coast. The objectives of these surveys are to provide fishery-independent abundance indices of all demersal fish species available to bottom trawling and to collect biological samples of selected species. The surveys follow a random depth-stratified design and the sampling units are 2 km by 2 km blocks. The synoptic bottom trawl surveys are conducted by Fisheries and Oceans Canada (DFO) in collaboration with the Canadian Groundfish Research and Conservation Society (CGRCS), a non-profit society composed of participants in the British Columbia commercial groundfish trawl fishery. The Queen Charlotte Sound and West Coast Haida Gwaii surveys are conducted under collaborative agreements, with the CGRCS providing chartered commercial fishing vessels and field technicians, while DFO provides in-kind contributions for running the surveys including personnel and equipment. The Hecate Strait, West Coast Vancouver Island, and Strait of Georgia surveys are conducted by DFO and have typically taken place on the Canadian Coast Guard research vessel W.E. Ricker. In years when the W.E. Ricker has not been available, the Hecate Strait and West Coast Vancouver Island surveys have taken place on chartered industry vessels.
-
The national wetland layer contains wetland data compiled from the best available data from each region, classified by wetland type. Wetlands are mapped as polygons in geographic layers, which are integrated into a master geodatabase at the national scale.Information from each contributing dataset was classified based on the Canadian Wetland Classification System, which contains five main wetland classes (Bog, Fen, Marsh, Swamp, and Shallow Water) that represent the types of wetlands encountered in Canada. An additional category, “partially classified” was used to preserve boundary information for wetlands that could not be classified into the main categories with existing information.
-
Multi-model ensembles of sea ice concentration based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice concentration as represented as the percentage (%) of grid cell area, are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
This dataset is produced and published annually by Natural Resources Canada. It contains a variety of statistics on Canada’s mineral production, and provides the geographic locations of significant metallic, nonmetallic and coal mines, oil sands mines, selected metallurgical works and gas fields for the provinces and territories of Canada. Related product: - **[Top 100 Exploration Projects](https://open.canada.ca/data/en/dataset/b64179f3-ea0f-4abb-9cc5-85432fc958a0)**
-
Air emissions from oil sands development can come from a number of sources including industrial smokestacks, tailings ponds, transportation, and dust from mining operations. Air quality monitoring under the Joint Canada-Alberta Implementation Plan for the Oil Sands is designed to determine the contribution of emissions from oil sands activities to local and regional air quality and atmospheric deposition both now and in the future. Ambient air quality data include: - Filter Pack (24-hour integrated concentrations of particle-bound SO2-4, NO-3, Cl-, NH+4, Ca2+, Mg2+, Na+, K+ and gaseous SO2 and HNO3 collected daily by the Canadian Air and Precipitation Monitoring Network) - Total Gaseous Mercury (hourly mixing ratios measured by the Canadian Air and Precipitation Monitoring Network and Prairie and Northern Region) - Atmospheric speciated mercury (Hg) (2-hour average concentrations of gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and Hg on PM2.5 (total particulate Hg - TPM) - Comprehensive set of measurements collected from an aircraft (various time resolutions) covering an area of 140,000 km2 over the oil sands region - Comprehensive set of measurements collected from the Fort McKay Oski-ôtin monitoring site - Ozone (hourly mixing ratios measured by the Canadian Air and Precipitation Monitoring Network) - Ozone Vertical Profiles (ozone mixing ratios as a function of height) measured by the Canadian Ozone Sonde Network - Aerosol Optical Depth (measure of the degree to which the presence of aerosols in the atmosphere prevents the transmission of light, from the ground to the top of the atmosphere) measured as part of the AErosol RObotic CANadian (AEROCAN) network - Satellite overpass data have a relatively high spatial resolution over the Oil Sands region to produce images and geo-referenced data of nitrogen dioxide (NO2) and sulphur dioxide (SO2) “vertical column density” (which correlates with surface concentration)
-
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected mean temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled minimum mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Arctic SDI catalogue