Keyword

British Columbia

150 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Resolution
From 1 - 10 / 150
  • Categories  

    This legacy Web Map Services will no longer be maintained on an ongoing basis as of December 31, 2015. It will be removed from operations as of March 31, 2016. To see the latest in DataBC WMS services please go to http://openmaps.gov.bc.ca.

  • Categories  

    Description: These commercial whale watching data are comprised of two datasets. First, the ‘whale_watching_trips_jun_sep_british_columbia’ data layer summarizes commercial whale watching trips that took place in 2019, 2020 and 2021 during the summer months (June to September). The second data layer, ‘wildlife_viewing_events_jun_sep_british_columbia’ contains estimated wildlife viewing events carried out by commercial whale watching vessels for the same years (2019, 2020 and 2021) and months (June to September). Commercial whale watching trips and wildlife viewing events are summarized using the same grid, and they can be related using the unique cell identifier field ‘cell_id’. The bulk of this work was carried out at University of Victoria and was funded by the Marine Environmental Observation, Prediction and Response (MEOPAR) Network under the ‘Whale watching AIS Vessel movement Evaluation’ or WAVE project (2018 – 2022). The aim of the WAVE project was to increase the understanding of whale watching activities in Canada’s Pacific region using vessel traffic data derived from AIS (Automatic Identification System). The work was finalized by DFO Science in the Pacific Region. These spatial data products of commercial whale watching operations can be used to inform Marine Spatial Planning, conservation planning activities, and threat assessments involving vessel activities in British Columbia. Methods: A list of commercial whale watching vessels based in British Columbia and Washington State and their corresponding MMSIs (Maritime Mobile Service Identity) was compiled from the whale watching companies and Marine Traffic (www.marinetraffic.com). This list was used to query cleaned CCG AIS data to extract AIS positions corresponding to commercial whale watching vessels. A commercial whale watching trip was defined as a set of consecutive AIS points belonging to the same vessel departing and ending in one of the previously identified whale watching home ports. A classification model (unsupervised Hidden Markov Model) using vessel speed as the main variable was developed to classify AIS vessel positions into wildlife-viewing and non wildlife viewing events. Commercial whale watching trips in the south and north-east of Vancouver Island were limited to a duration of minimum 1 hour and maximum 3.5 hours. For trips in the west coast of Vancouver island the maximum duration was set to 6 hours. Wildlife-viewing events duration was set to minimum of 10 minutes to a maximum of 1 hour duration. For more information on methodology, consult metadata pdf available with the Open Data record. References: Nesdoly, A. 2021. Modelling marine vessels engaged in wildlife-viewing behaviour using Automatic Identification Systems (AIS). Available from: https://dspace.library.uvic.ca/handle/1828/13300. Data Sources: Oceans Network Canada (ONC) provided encoded AIS data for years 2019, 2020 and 2021, within a bounding box including Vancouver Island and Puget Sound used to generate these products. This AIS data was in turn provided by the Canadian Coast Guard (CCG) via a licensing agreement between the CCG and ONC for the non-commercial use of CCG AIS Data. More information here: https://www.oceannetworks.ca/science/community-based-monitoring/marine-domain-awareness-program/ Molly Fraser provided marine mammal sightings data collected on board a whale watching vessels to develop wildlife-viewing events classification models. More information about this dataset here: https://www.sciencedirect.com/science/article/pii/S0308597X20306709?via%3Dihub Uncertainties: The main source of uncertainty is with the conversion of AIS point locations into track segments, specifically when the distance between positions is large (e.g., greater than 1000 meters).

  • Categories  

    Herring Permanent Spawn Transects (geodatabase) - used for herring spawn survey program and spatial analysis/presentation of spawn data from Herring Stock Assessment Database (including creation of spawn polygons).

  • Categories  

    Herring biological (fish and sample) data as part of Herring Stock Assessment database

  • Categories  

    Herring Section shapefile - used for spatial analysis/presentation of data from Herring Stock Assessment Database.

  • Categories  

    This legacy Web Map Services will no longer be maintained on an ongoing basis as of December 31, 2015. It will be removed from operations as of March 31, 2016. To see the latest in DataBC WMS services please go to http://openmaps.gov.bc.ca.

  • Categories  

    Survey data depicting the presence of the endangered Rocky Mountain Ridged Mussel (Gonidea angulata) from 2008-2011. Surveys were conducted by different researchers at different locations.

  • Categories  

    Fisheries and Oceans Canada has conducted a cumulative human impact mapping analysis for Pacific Canada to support ongoing Marine Spatial Planning. Cumulative impact mapping (CIM) combines spatial information on human activities, habitats, and a matrix of vulnerability weights into an intuitive relative ‘cumulative impact score’ that shows where cumulative human impacts are greatest and least. To map cumulative impacts, a recently developed ecosystem vulnerability assessment for Pacific Canadian waters (Murray et al. 2022) was combined with spatial information on thirty-eight (38) different habitat types and forty-five (45) human activities following the methodology from Halpern et al.(2008) and Murray et al. (2015). The cumulative impact map is provided in a 1x1 km grid used for oceans management by Fisheries and Oceans Canada. For further information, please contact the data provider.

  • Categories  

    This dataset provides projected 30-year, 50-year, and 100-year return levels for harbours in British Columbia by 2050 and 2100 under a high emission scenario SSP585, relative to the mean sea level over 1993-2020. The return levels are a combination of estimated present extreme sea levels and projected mean sea level rise. The present extreme sea levels are derived from hourly coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM). The projected mean sea level rise is derived from the regional mean sea level rise data of the IPCC 6th Assessment Report under SSP585, adjusted for the local vertical land motion.

  • Categories  

    Description: Data on recreational boating are needed for marine spatial planning initiatives in British Columbia (BC). Vessel traffic data are typically obtained by analyzing automatic identification system (AIS) vessel tracking data, but recreational vessels are often omitted or underrepresented in AIS data because they are not required to carry AIS tracking devices. Transport Canada’s National Aerial Surveillance Program (NASP) conducted aerial surveys to collect information on recreational vessels along several sections of the BC coast between 2018 and 2022. Recreational vessel sightings were modeled against predictor variables (e.g., distance to shore, water depth, distance to, and density of marinas) to predict the number of recreational vessels along coastal waters of BC. The files included here are: --A Geodatabase (‘Recreational_Boating_Data_Model’), which includes: (1) recreational vessel sightings data collected by NASP in BC and used in the recreational vessel traffic model (‘Recreational_Vessels_PointData_BC’); (2) aerial survey effort (or number of aerial surveys) raster dataset (‘surveyeffort’); and (3) a vector grid dataset (2.5 km resolution) containing the predicted number of recreational vessels per cell and predictor variables (‘Recreational_Boating_Model_Results_BC). --Scripts folder which includes R Markdown file with R code to run the modelling analysis (‘Recreational_Boating_Model_R_Script’) and data used to run the code. Methods: Data on recreational vessels were collected by NASP during planned aerial surveys along pre-determined routes along the BC coast from 2018 to 2022. Data on non-AIS recreational vessels were collected using video cameras onboard the aircraft, and data on AIS recreational vessels using an AIS receiver also onboard the aircraft. Recreational boating predictors explored were: water depth, distance to shore, distance to marinas, density of marinas, latitude, and longitude. Recreational vessel traffic models were fitted using Generalized Linear Models (GLM) R packages and libraries used here include: AED (Roman Lustrik, 2021) and MASS (Venables, W. N., Ripley, 2002), pscl package (Zeileis, Kleiber, and Jackman, 2008) for zeroinfl() and hurdle() function. Final model was selected based on the Akaike’s information criterion (AIC) and the Bayes’ information criterion (BIC). An R Markdown file with code use to run this analysis is included in the data package in a folder called Script. Spatial Predictive Model: The selected model, ZINB, consist of two parts: one with a binomial process that predicts the probability of encountering a recreational vessel, and a second part that predicts the number of recreational vessels via a count model. The closer to shore and to marinas, and the higher the density of marinas, the higher the predicted number of recreational vessels. The probability of encountering recreational vessels is driven by water depth and distance to shore. For more information on methodology, consult metadata pdf available with the Open Data record. References: Serra-Sogas, N. et al. 2021. Using aerial surveys to fill gaps in AIS vessel traffic data to inform threat assessments, vessel management and planning. Marine Policy 133: 104765. https://doi.org/10.1016/j.marpol.2021.104765 Data Sources: Recreational vessel sightings and survey effort: Data collected by NASP and analyzed by Norma Serra to extract vessel information and survey effort (more information on how this data was analyzed see SerraSogas et al, 2021). Bathymetry data for the whole BC coast and only waters within the Canadian EEZ was provided by DFO – Science (Selina Agbayani). The data layer was presented as a raster file of 100 meters resolution. Coastline dataset used to estimate distance to shore and to clip grid was provided by DFO – Science (Selina Agbayani), created by David Williams and Yuriko Hashimoto (DFO – Oceans). Marinas dataset was provided by DFO – Science (Selina Agbayani), created by Josie Iacarella (DFO – Science). This dataset includes large and medium size marinas and fishing lodges. The data can be downloaded from here: Floating Structures in the Pacific Northwest - Open Government Portal (https://open.canada.ca/data/en/dataset/049770ef-6cb3-44ee-afc8-5d77d6200a12) Uncertainties: Model results are based on recreational vessels sighted by NASP and their related predictor variables and not always might reflect real-world vessel distributions. Any biases caused by the opportunistic nature of the NASP surveys were minimized by using survey effort as an offset variable.