Arctic Ocean
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
This record contains satellite-sensed chlorophyll-a concentration images of the Canadian Beaufort Sea at 1.1 km resolution. The dataset consists of 276 images, aggregated into two-week composites by calculating the mean value at each pixel, comprising years 1998 through 2020. The dataset spans two ocean colour sensors, MODIS-Aqua and SeaWiFS. The Arctic Ocean Empirical algorithm was used to calculate chlorophyll-a concentration, after images were corrected for atmospheric effects using the NIR-SWIR switching algorithm, and Remote Sensing Reflectance (Rrs) were produced. A linear transform in log-10 space was applied to the chlorophyll-a concentration measured by SeaWiFS to improve its correlation with chlorophyll-a concentration measured by MODIS-Aqua. The months of October through February were excluded from these datasets as the sun angle in winter is too low (e.g., polar night) for reliable data to be acquired, and the region is mostly covered in sea ice. For further details, see Galley et al., 2022.
-
Across the Canadian North, Arctic Char, Salvelinus alpinus, are culturally important and critical for maintaining subsistence lifestyles and ensuring food security for Inuit. Arctic Char also support economic development initiatives in many Arctic communities through the establishment of coastal and inland commercial char fisheries. The Halokvik River, located near the community of Cambridge Bay, Nunavut, has supported a commercial fishery for anadromous Arctic Char since the late 1960s. The sustainable management of this fishery, however, remains challenging given the lack of biological data on Arctic Char from this system and the limited information on abundance and biomass needed for resolving sustainable rates of exploitation. In 2013 and 2014, we enumerated the upstream run of Arctic Char in this system using a weir normally used for commercial harvesting. Additionally, we measured fish length and used T-bar anchor tags to mark a subset of the run. Subsequently, we estimated population size using capture-mark-recapture (CMR) methods. The estimated number of Arctic Char differed substantially between years. In 2013, 1967 Arctic Char were enumerated whereas in 2014, 14,502 Arctic Char were enumerated. We attribute this marked difference primarily to differences in weir design between years. There was also no significant relationship between daily mean water temperature and number of Arctic Char counted per day in either year of the enumeration. The CMR population estimates of Arctic Char (those ≥450mm in length) for 2013 and 2014 were 35,546 (95% C.I 30,513-49,254) and 48,377 (95% C.I. 37,398-74,601) respectively. The 95% CI overlapped between years, suggesting that inter-annual differences may not be as extreme as what is suggested by the enumeration. The population estimates reported here are also the first estimates of population size for an Arctic Char stock in the Cambridge Bay region using CMR methodology. Overall, the results of this study will be valuable for understanding how population size may fluctuate over time in the region and for potentially providing advice on the sustainable rates of harvest for Halokvik River Arctic Char. Additionally, the results generated here may prove valuable for validating current stock assessment models that are being explored for estimating biomass and abundance for commercial stocks of Arctic Char in the region.
-
PURPOSE: Understanding and predicting species range shifts is crucial for conservation amid global warming. This study analyzes life-history traits of four seal species (ringed (Pusa hispida Schreber, 1775), bearded (Erignathus barbatus Pallas, 1811), harp (Pagophilus groenlandicus Erxleben, 1777), and harbour (Phoca vitulina Linnaeus, 1758) seals) in the Canadian Arctic using data from Inuit subsistence harvests. Bearded seals are largest, followed by harp seals, harbour seals, and ringed seals. Seasonal blubber depth patterns show minimal variation in bearded seals, whereas harbour and ringed seals accumulate fat in open-water seasons and use it during ice-covered seasons. Endemic Arctic seals (ringed and bearded) exhibit greater longevity and determinate body growth, reaching maximum size by 5 years, while harbour and harp seals grow indeterminately, physically maturing around 10-15 years. Age of maturation varies, with ringed and harbour seals being more sensitive to environmental fluctuations. Most bearded seals reproduce successfully each year, while ringed seals exhibit more variability in their annual reproductive success. Analysis of isoprenoid lipids in liver tissue indicates that ringed and bearded seals rely on ice-algal production, whereas harp and harbour seals depend on open-water phytoplankton production. Bearded seals appear more specialized and potentially face less competition, while harp seals may adapt better to changing habitats. Despite expected range shifts to higher latitudes, all species exhibit tradeoffs, complicating predictions for the evolving Arctic environment. DESCRIPTION: This dataset contains the data reported in Steven H. Ferguson, Jeff W. Higdon, Brent G. Young, Stephen D. Petersen, Cody G. Carlyle, Ellen V. Lea, Caroline C. Sauvé, Doreen Kohlbach, Aaron T. Fisk, Gregory W. Thiemann, Katie R. N. Florko, Derek C. G. Muir, Charmain D. Hamilton, Magali Houde, Enooyaq Sudlovenick, and David J. Yurkowski. 2024. A comparative analysis of life-history features and adaptive strategies of Arctic and subarctic seal species - who will win the climate change challenge? Canadian Journal of Zoology 2024-0093.R1 The data set includes species, location, harvest date, sex, age, standard length, girth, fat depth, teste size, parity status, pregnancy status, corpora lutea (n), corpus albicans (n), follicles (n). This dataset includes raw, unfiltered, and unprocessed historical data provided by harvesters that have not been screened for outliers. Individual users should screen the data for their specific use. Cite these data as: Steven H. Ferguson, Jeff W. Higdon, Brent G. Young, Stephen D. Petersen, Cody G. Carlyle, Ellen V. Lea, Caroline C. Sauvé, Doreen Kohlbach, Aaron T. Fisk, Gregory W. Thiemann, Katie R. N. Florko, Derek C. G. Muir, Charmain D. Hamilton, Magali Houde, Enooyaq Sudlovenick, and David J. Yurkowski. 2024. Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB. https://open.canada.ca/data/en/dataset/ea9ff038-8b16-11ef-8cce-55cc7f028297
-
Figure 3.2.1a: Map of high throughput sequencing records from the Arctic Marine Areas. Figure 3.2.1b: Map of records of phytoplankton taxa using microscopy from the Arctic Marine Areas. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/findings/plankton" target="_blank">Chapter 3</a> - Page 35 - Figure 3.2.1a and Figure 3.2.1b In terms of stations sampled, the greatest sampling effort of high-throughput sequencing in Arctic marine water columns, by far, has been in the Beaufort Sea/Amundsen Gulf region and around Svalbard. High through-put sequencing has also been used on samples from the Chukchi Sea, Canadian Arctic Archipelago, Baffin Bay, Hudson Bay, the Greenland Sea and Laptev Sea.
-
PURPOSE: Eastern Beaufort Sea beluga whales form one of the largest summering aggregations of the species in the Mackenzie Estuary. In 2010, the Tarium Niryutait Marine Protected Area (TNMPA) was designated to protect beluga whales and their habitats As a part of ongoing ecological monitoring efforts in the TN MPA, passive acoustic monitoring (PAM) was implemented in 2011 to act as continuous monitoring method, filling the temporal gaps associated with historical aerial surveys. Beginning in 2014, PAM effort increased each year, and oceanographic sensors were added to moorings to (1) better understand oceanographic conditions within the TN MPA and (2) examine the environmental parameters that drive beluga movement and habitat use patterns within the estuary. Several studies using this dataset have been completed, and others are ongoing. However, much more can be done with the acoustic and environmental data. The purpose of this report is to outline deployment methods and instrument settings for moorings deployed from 2014-2022 to support the full use of the data collected. DESCRIPTION: Each summer, Eastern Beaufort Sea beluga whales form one of the largest aggregations of the species in the Mackenzie Estuary. In 2010, the Tarium Niryutait Marine Protected Area (TNMPA) was designated in the estuary to protect beluga whales and their habitats. As a part of ongoing ecological monitoring efforts in the TN MPA, passive acoustic monitoring (PAM) was implemented in 2011 to act as continuous monitoring method, filling the temporal gaps associated with historical aerial surveys. Beginning in 2014, PAM effort increased each year, and oceanographic sensors were added to each PAM mooring to (1) better understand oceanographic conditions (i.e., temperature, salinity, turbidity, and wave conditions) within the TN MPA and (2) to examine the environmental parameters that drive beluga movement and habitat use patterns within the estuary. Moorings have been deployed with varying configurations of oceanographic sensors in Kugmallit Bay since 2015 (2015-2022), but typically record water temperature, salinity, depth, and wave conditions. In 2018, the program was expanded to the Niaqunnaq parcel of the MPA (Shallow Bay) (2018-2022), and in 2021 it was expanded again to the Okeevik parcel of the MPA (2021-2022). These observatories have provided new knowledge about drivers of beluga habitat use in the TN MPA, in particular in Kittigaryuit, but more recently in Niaqunnaq and Okeevik.
-
This record contains two-weekly minimum sea ice concentration images of the Canadian Beaufort Sea at 1.1 km resolution. The dataset originated from the Canadian Ice Service (CIS) Digital Archive weekly regional charts for the western Arctic (See “additional credit” for a link to these data), created by synthesis of remotely-sensed, ship and airborne observations (Fequet, 2005). These vector ice charts were gridded at 1.1 km resolution and aggregated into two-week composites by calculating the minimum sea-ice concentration at each grid cell over each two-week interval in each year. Week numbers were defined using the ISO 8601 convention, and sea-ice concentration isrepresented in tenths (with 0/10 corresponding to an ice-free pixel, ranging to 10/10 corresponding to 100% pixel coverage with sea-ice). The result is 12 composite images per year in 1998 through 2020 (23 years), corresponding to https://open.canada.ca/data/en/dataset/ee27e86f-7b18-4e3f-8444-0c5efb6110a4. For further details, see Galley et al., 2022.
-
(La version française suit) What is an Ecologically and Biologically Significant Area? Ecologically and Biologically Significant Areas (EBSAs) are areas within Canada’s oceansthat have been identified through formal scientific assessments as having special biological or ecological significance when compared with the surrounding marine ecosystem.Failure to define an area as an EBSA does not mean that it is unimportant ecologically. All areas serve ecological functions to some extent and require sustainable management. Rather, areas identified as EBSAs should be viewed as the most important areas where, with existing knowledge, regulators and marine users should be particularly risk averse to ensure ecosystems remain healthy and productive. Why are EBSAs identified? EBSA information is used to inform marine planning, including environmental assessment and the siting of marine-based activities, by: Informing and guiding project-specific or regional environmental assessments; Informing and guiding industries and regulators in their planning and operations, for example: EBSAs have been acknowledged and referred to (often as "Special Areas" or "Potentially Sensitive Areas") in oil and gas related assessments. EBSA information has been provided to proponents of submarine cable projects to be used for route planning purposes. Informing and guiding the Integrated Oceans Management (IOM)process within five Large Oceans Management Areas (LOMAs)and 12 marine bioregions; Serving as a basis for the identification of Areas of Interest (AOIs)and of Marine Protected Areas (MPAs)(individually and in the context of planning bioregional networks of MPAs); How are EBSAs identified? The process used to identify EBSAs is generally comprised of two phases. The first phase involves compiling scientific data and knowledge of a marine area’s ecosystems ─ notably fish species, marine mammals, sea birds, marine flora, marine productivity, physical and chemical conditions and geology. “Knowledge” includes experiential knowledge of long-time uses of the areas. In some cases (e.g., in the Arctic), substantial efforts are taken to collect traditional knowledge on ecosystems and environmental conditions from community members, fish harvests, hunters and individuals whose knowledge of the study area complement and often helps fill scientific data gaps. In the second phase, the available information for a marine area (e.g. a bioregion) is assessed against five nationally-established science-based criteria including: Uniqueness: How distinct is the ecosystem of an area compared to surrounding ones? Aggregation: Whether or not species populate or convene to the study area? Fitness consequence: How critical the area is to the life history of the species that use it (e.g. is it a spawning or feeding ground)? Naturalness: How pristine or disturbed by human activities is the study area? Resilience: What is the ability of the ecosystem to bounce back if it is disturbed? Progress to date and next steps EBSAs have been identified for large portions of Canada’s Atlantic and Pacific oceans as well as most of the Arctic oceans. For a map of current EBSAs in these areas, click here. EBSAs will continue to be identified in priority areas as resources become available to carry out the process. The boundaries or locations of existing EBSAs may be modified to reflect both new knowledge and changing environmental conditions. Les zones d'importance écologique et biologique (ZIEB) sont des zones au sein des eaux océaniques canadiennesque des évaluations scientifiques officielles ont désignées comme ayant une importance écologique et biologique particulière par rapport à l'écosystème marin environnant. Le fait qu'une zone n'ait pas été désignée comme ayant une importance écologique et biologique ne signifie pas pour autant qu'elle n'a pas une importance écologique. Toutes les zones assument des fonctions écologiques dans une certaine mesure et exigent une gestion durable. Les zones désignées comme des ZIEB devraient plutôt être vues comme des zones extrêmement importantes, où les connaissances, les législateurs et les utilisateurs des ressources marines doivent exercer une grande prudence eu égard au risque, afin de veiller à ce que les écosystèmes restent sains et productifs. Pourquoi des ZIEB sont-elles désignées? Les renseignements relatifs à ces aires sont utilisés pour appuyer la planification marine, notamment l'évaluation environnementale et la mise en place d'activités marines: En informant et guidant les industries et les législateurs pour une planification et une conduite d'activités optimale, par exemple: les zones d'importance écologique et biologique ont été prises en compte et mentionnées dans les évaluations portant sur le pétrole et le gaz. Des renseignements ont été fournis aux promoteurs de projets de câbles sous-marins, afin de les aider à en déterminer les tracés. En information et en guidant le processus de gestion intégrée des océans dans cinq zones étendues de gestion des océans et 12 biorégions marines. En servant de fondement pour la détermination des zones d'intérêt et des zones de protection marines (de manière individuelle et dans le cadre de la planification des réseaux biorégionaux de zones de protection marines). Comment désigne-t-on les zones d'importance écologique et biologique? Le processus utilisé pour désigner les zones d'importance écologique et biologique comprend généralement deux étapes. La première étape consiste à recueillir des données scientifiques et des connaissances relatives aux écosystèmes d'une aire marine, notamment les espèces de poissons, de mammifères marins et d'oiseaux marins, la flore marine, la productivité marine, les conditions physiques et chimiques, et la géologie. Les « connaissances » comprennent les connaissances empiriques des utilisateurs de longue date de ces aires. Dans certains cas (p. ex. dans l'Arctique), d'importants efforts sont déployés pour réunir les connaissances traditionnelles sur les écosystèmes et les conditions environnementales des membres des communautés, des pêcheurs, des chasseurs et des personnes dont la connaissance de la zone étudiée complète l'information existante et permet souvent d'aider à combler les lacunes dans les données scientifiques. La deuxième étape consiste à évaluer l'information disponible relative à une aire marine (p. ex., une biorégion) en utilisant cinq critères scientifiques nationaux: La spécificité: dans quelle mesure l'écosystème d'une aire est-il distinct des écosystèmes environnants? La concentration: l'aire étudiée abrite-t-elle des espèces ou est-elle un lieu de regroupement d'espèces? Les conséquences sur la valeur adaptative: dans quelle mesure l'aire est-elle vitale pour le cycle biologique des espèces qui l'utilisent (p. ex., est-ce une zone de frai ou d'alimentation? Le caractère naturel: dans quelle mesure la zone étudiée est-elle demeurée intacte ou est-elle perturbée par les activités humaines? La résilience: dans quelle mesure l'écosystème est-il capable de se rétablir s'il est perturbé? Progrès réalisés à ce jour et prochaines étapes Des zones d'importance écologique et biologique ont été désignées dans une grande partie des eaux océaniques de l'Atlantique et du Pacifique canadien, ainsi que dans la quasi-totalité de l'océan Arctique. À mesure que des ressources seront disponibles pour mener à bien le processus, des zones d'importance écologique et biologique continueront à être désignées dans les zones prioritaires. Les limites ou les emplacements des zones d'importance écologique et biologique existantes sont susceptibles d'être modifiés pour refléter les nouvelles connaissances et conditions environnementales.
-
(La version française suit) What is an Ecologically and Biologically Significant Area? Ecologically and Biologically Significant Areas (EBSAs) are areas within Canada’s oceansthat have been identified through formal scientific assessments as having special biological or ecological significance when compared with the surrounding marine ecosystem.Failure to define an area as an EBSA does not mean that it is unimportant ecologically. All areas serve ecological functions to some extent and require sustainable management. Rather, areas identified as EBSAs should be viewed as the most important areas where, with existing knowledge, regulators and marine users should be particularly risk averse to ensure ecosystems remain healthy and productive. Why are EBSAs identified? EBSA information is used to inform marine planning, including environmental assessment and the siting of marine-based activities, by: Informing and guiding project-specific or regional environmental assessments; Informing and guiding industries and regulators in their planning and operations, for example: EBSAs have been acknowledged and referred to (often as "Special Areas" or "Potentially Sensitive Areas") in oil and gas related assessments. EBSA information has been provided to proponents of submarine cable projects to be used for route planning purposes. Informing and guiding the Integrated Oceans Management (IOM)process within five Large Oceans Management Areas (LOMAs)and 12 marine bioregions; Serving as a basis for the identification of Areas of Interest (AOIs)and of Marine Protected Areas (MPAs)(individually and in the context of planning bioregional networks of MPAs); How are EBSAs identified? The process used to identify EBSAs is generally comprised of two phases. The first phase involves compiling scientific data and knowledge of a marine area’s ecosystems ─ notably fish species, marine mammals, sea birds, marine flora, marine productivity, physical and chemical conditions and geology. “Knowledge” includes experiential knowledge of long-time uses of the areas. In some cases (e.g., in the Arctic), substantial efforts are taken to collect traditional knowledge on ecosystems and environmental conditions from community members, fish harvests, hunters and individuals whose knowledge of the study area complement and often helps fill scientific data gaps. In the second phase, the available information for a marine area (e.g. a bioregion) is assessed against five nationally-established science-based criteria including: Uniqueness: How distinct is the ecosystem of an area compared to surrounding ones? Aggregation: Whether or not species populate or convene to the study area? Fitness consequence: How critical the area is to the life history of the species that use it (e.g. is it a spawning or feeding ground)? Naturalness: How pristine or disturbed by human activities is the study area? Resilience: What is the ability of the ecosystem to bounce back if it is disturbed? Progress to date and next steps EBSAs have been identified for large portions of Canada’s Atlantic and Pacific oceans as well as most of the Arctic oceans. For a map of current EBSAs in these areas, click here. EBSAs will continue to be identified in priority areas as resources become available to carry out the process. The boundaries or locations of existing EBSAs may be modified to reflect both new knowledge and changing environmental conditions. Les zones d'importance écologique et biologique (ZIEB) sont des zones au sein des eaux océaniques canadiennesque des évaluations scientifiques officielles ont désignées comme ayant une importance écologique et biologique particulière par rapport à l'écosystème marin environnant. Le fait qu'une zone n'ait pas été désignée comme ayant une importance écologique et biologique ne signifie pas pour autant qu'elle n'a pas une importance écologique. Toutes les zones assument des fonctions écologiques dans une certaine mesure et exigent une gestion durable. Les zones désignées comme des ZIEB devraient plutôt être vues comme des zones extrêmement importantes, où les connaissances, les législateurs et les utilisateurs des ressources marines doivent exercer une grande prudence eu égard au risque, afin de veiller à ce que les écosystèmes restent sains et productifs. Pourquoi des ZIEB sont-elles désignées? Les renseignements relatifs à ces aires sont utilisés pour appuyer la planification marine, notamment l'évaluation environnementale et la mise en place d'activités marines: En informant et guidant les industries et les législateurs pour une planification et une conduite d'activités optimale, par exemple: les zones d'importance écologique et biologique ont été prises en compte et mentionnées dans les évaluations portant sur le pétrole et le gaz. Des renseignements ont été fournis aux promoteurs de projets de câbles sous-marins, afin de les aider à en déterminer les tracés. En information et en guidant le processus de gestion intégrée des océans dans cinq zones étendues de gestion des océans et 12 biorégions marines. En servant de fondement pour la détermination des zones d'intérêt et des zones de protection marines (de manière individuelle et dans le cadre de la planification des réseaux biorégionaux de zones de protection marines). Comment désigne-t-on les zones d'importance écologique et biologique? Le processus utilisé pour désigner les zones d'importance écologique et biologique comprend généralement deux étapes. La première étape consiste à recueillir des données scientifiques et des connaissances relatives aux écosystèmes d'une aire marine, notamment les espèces de poissons, de mammifères marins et d'oiseaux marins, la flore marine, la productivité marine, les conditions physiques et chimiques, et la géologie. Les « connaissances » comprennent les connaissances empiriques des utilisateurs de longue date de ces aires. Dans certains cas (p. ex. dans l'Arctique), d'importants efforts sont déployés pour réunir les connaissances traditionnelles sur les écosystèmes et les conditions environnementales des membres des communautés, des pêcheurs, des chasseurs et des personnes dont la connaissance de la zone étudiée complète l'information existante et permet souvent d'aider à combler les lacunes dans les données scientifiques. La deuxième étape consiste à évaluer l'information disponible relative à une aire marine (p. ex., une biorégion) en utilisant cinq critères scientifiques nationaux: La spécificité: dans quelle mesure l'écosystème d'une aire est-il distinct des écosystèmes environnants? La concentration: l'aire étudiée abrite-t-elle des espèces ou est-elle un lieu de regroupement d'espèces? Les conséquences sur la valeur adaptative: dans quelle mesure l'aire est-elle vitale pour le cycle biologique des espèces qui l'utilisent (p. ex., est-ce une zone de frai ou d'alimentation? Le caractère naturel: dans quelle mesure la zone étudiée est-elle demeurée intacte ou est-elle perturbée par les activités humaines? La résilience: dans quelle mesure l'écosystème est-il capable de se rétablir s'il est perturbé? Progrès réalisés à ce jour et prochaines étapes Des zones d'importance écologique et biologique ont été désignées dans une grande partie des eaux océaniques de l'Atlantique et du Pacifique canadien, ainsi que dans la quasi-totalité de l'océan Arctique. À mesure que des ressources seront disponibles pour mener à bien le processus, des zones d'importance écologique et biologique continueront à être désignées dans les zones prioritaires. Les limites ou les emplacements des zones d'importance écologique et biologique existantes sont susceptibles d'être modifiés pour refléter les nouvelles connaissances et conditions environnementales.
-
Moving 6-year analysis of phosphate in the Arctic Ocean, for each season in the period 1970-2017. Every year of the time dimension corresponds to the 6-year centered average for each season. Winter: December-February, Spring: March-May, Summer: June-August, Autumn: September-November. Depth range (IODE standard depths): 0, 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, 300, 400, ..., 1500, 1750, 2000, 2500m. Units: umol/l. Description of DIVA analysis: The computation was done with DIVAnd (Data-Interpolating Variational Analysis in n dimensions), version 2.7.9, using GEBCO 30sec topography for the spatial connectivity of water masses. The horizontal resolution of the produced DIVAnd maps grids is 0.1 degrees. Signal-to-noise ratio was fixed to 3.0, horizontal correlation length varying from 45 km near the coast to 150 km, and vertical correlation length varying between 25 and 1000 m. Logarithmic transformation is applied to the data prior to the analysis. Background field: analysis with signal-to-noise ratio = 10, horizontal correlation length 60-200 km, and vertical correlation length 25-1000 m.
-
Moving 6-year analysis of Water body dissolved oxygen concentration in the Arctic Ocean, for each season in the period 1965-2017. Every year of the time dimension corresponds to the 6-year centered average for each season. Winter: December-February, Spring: March-May, Summer: June-August, Autumn: September-November. Depth range (IODE standard depths): 0, 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, 300, 400, ..., 1500, 1750, 2000, 2500m. Units: umol/l. Description of DIVA analysis: The computation was done with the DIVAnd (Data-Interpolating Variational Analysis in n dimensions), version 2.6.6, using GEBCO 30sec topography for the spatial connectivity of water masses. The horizontal resolution of the produced DIVAnd maps grids is 0.1 degrees. Signal-to-noise ratio was fixed to 2.0, horizontal correlation length to 100 km, and vertical correlation length varying between 25 and 200 m. Logarithmic transformation is applied to the data prior to the analysis. Background field: the data mean value is subtracted from the data.