SHP
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
Gögin upplýsingar um strok og tjón sem hefur átt sér stað sjókvíeldi. Hægt er að sjá hvar strokið átti sér stað, hvenær og hverskonar fiskur strauk. Einnig er hægt að sjá hvort hjón var á búnaði eða gat á kví. Fyrir frekari upplýsingar er bent á að hafa samband við matvælastofnun.
-
This collection is a legacy product that is no longer supported. It may not meet current government standards. The North American Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. The North American Atlas data are intended for geographic display and analysis at the national and continental level. Any data outside of Canada, Mexico, and the United States of America included in the North American Atlas data sets is strictly to complete the context of the data.
-
This project was completed by the Coastal Environmental Baseline Program (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). From 2018 to 2022 baseline biological and physical data were collected in Placentia Bay using Atlantic Zone Monitoring Program (AZMP) and Cold Ocean Productivity Experiment (COPE) protocols. Complementary data were collected in the bay using moored CTDs. Where possible, sampling was conducted monthly at 4 sites between May and November to capture broad scale spatial and temporal trends. Additionally, data were collected bi-weekly in April and May, and monthly from June to September at one of these sites to capture finer scale temporal trends, such as spring blooms, in collaboration with Dr. C. McKenzie. Phytoplankton were collected using vertical net tows and niskins. Zooplankton were collected using vertical net tows. CTDs were used to collect physical and biogeochemical water column data including temperature, pressure, salinity, depth, chlorophyll-a, turbidity, dissolved oxygen, pH, photosynthetic active radiation (PAR), fluorescent dissolved organic matter (FDOM), and conductivity. Water biogeochemistry data were obtained by collecting water samples with niskins at depths of 5, 10, 20, 30, 40m, and 10m above bottom to measure nutrients, chlorophyll-a, carbonates, and particulate organic carbon and nitrogen (POC/PON). Additionally, eDNA samples were taken at each of the 4 sampling sites. This record contains the geographic locations of the sites, and information on the timing and type of data collected at each site.
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
Hydrogeological Regions provide a framework to introduce the regional hydrogeology of Canada and to connect apparently disparate studies into a broader framework. The hydrological regions are first order areas used to capture and summarize data that will help develop more detailed profiles of each region. Comparison of findings within and between regions will allow scalable extension to sub-regional and watershed scale mapping. Canada has been classified into nine principal hydrogeological regions. Each region is described briefly based on the following five hydrogeological characteristics (Heath, 1984): system components and geometry; water-bearing openings; rock matrix composition; storage and transmission; recharge/ discharge. The hydrogeological classification emphasizes major geological provinces and rock formations. Fundamental water-bearing openings and rock matrix properties help determine the quantity (storage), flux (transmission), and composition of formation waters. These same properties and any overlying sediment cover affect recharge/ discharge rates for regional formations. While regional attributes are general, a simple aquifer mapping scheme can further describe the nature and character of aquifers in each region. For example, general groundwater settings across the country could be described as has been done by USGS principal aquifers [1]. Thus the regional framework can potentially link from national scales to watershed scales by identifying typical aquifer types based on readily available geological maps that use water-bearing character as a common attribute. The nine hydrogeological regions include: Cordillera Mountains with thin sediment over fractured sedimentary, igneous and metamorphic rocks of Precambrian to Cenozoic age. Intermontane valleys are underlain by glacial and alluvial deposits of Pleistocene age. Plains (Western Sedimentary Basin) Region-wide basin of sub-horizontal Paleozoic to Cenozoic sedimentary rocks are overlain by thick glacial deposits filling buried valleys. Incised post-glacial valleys provide local relief. Shallow gas, coal, and brines may occur. Canadian Shield Undulating region of thin glacial sediment overlying complex deformed, fractured PreCambrian igneous, metamorphic and sedimentary rocks. Region contains several terrains: sedimentary basins, structural belts, and glacial-lacustrine basins. Hudson Bay (Moose River) Basin Sedimentary basin of Paleozoic to Mesozoic sub horizontal carbonate and clastic sediment covered by surficial deposits, with low relief and poor drainage. Southern Ontario Eastern Great Lakes region is underlain by gently-dipping Paleozoic, carbonate, clastic and gypsum-salt strata overlain by glacial sediments up to 200 m thick with tunnel valleys. Karst, bedrock valleys, shallow gas and brines are also important components. St. Lawrence Lowlands Lowlands underlain by shallow-dipping Paleozoic sedimentary rocks and thick glacial sediment in glacial-marine basins. Appalachian and Precambrian uplands discharge water to valleys. Shallow gas and saltwater intrusion are possible. Appalachia Upland to mountainous region with thin surficial sediment on folded Paleozoic sedimentary and igneous rocks. Range of rock types yields a wide range of water compositions. Valleys contain important alluvial aquifers. Maritimes Basin Lowlands with flat-lying, Carboniferous clastic , salt, and gypsum rocks contain shallow coal deposits. Surface glacial sediment is thin and discontinuous. Salt water intrusion is possible. Permafrost Arctic islands and most areas north of 60o contain frozen ground affects on groundwater flow. Diverse topography and geology define sub-regions of sedimentary basins and crystalline rocks. Glacial sediment is thin, discontinuous; local peat accumulations are significant.
-
The land division system used for describing the extent of oil and gas interests located in the Northwest Territories, Nunavut or in Canada's offshore area is defined in the Canada Oil and Gas Land Regulations. This land division system consists of a grid system divided into Grid Areas, Sections, and Units – all referenced to the North American Datum of 1927 (NAD27). This data provides the geo-spatial representation of the NAD27 Oil and Gas Grid Areas referenced to NAD83 Datum. The creation of the Oil and Gas Grid Areas geo-spatial file covers areas that are situated in the Northwest Territories, Nunavut or Sable Island as well as submarine areas, not within a province, in the internal waters of Canada, the territorial sea of Canada or the continental shelf of Canada beyond 200 nm zone. The NAD83 grid area boundaries are defined by geodesics joining the four grid area corners. For sections and units, the eastern and western grid area geodesic boundaries are partitioned into 40 equal segments. The northern and southern grid area geodesic boundaries are partitioned into 40, 32 or 24 equal segments, depending on latitude. All internal corners at the section and unit level are defined by the intersections of north-south and east-west geodesics joining corresponding partition points along the northern and southern, and eastern and western, grid area geodesic boundaries.
-
This data depicts the locations of Short Rotation Woody Crop (SRWC) research, development and demonstration sites established across Canada by the Canadian Wood Fibre Centre, its partners and/or private land owners. Short Rotation Woody Crops represent enormous potential with respect to future sources of bioenergy and/or sinks for carbon. Since 2002, the Silviculture Innovation Group of the Canadian Wood Fibre Centre has established over 1 000 hectares of "high yield afforestation", “mixedwood afforestation” and "concentrated woody biomass" SRWC systems across Canada. The refinement of the biological and operational components of these systems is ongoing to improve production efficiencies, reduce costs, and enhance site sustainability. Development, assessment and validation of value-chain options for the establishment, recovery, transportation, handling and conditioning phases of these short rotation woody feedstock systems is also being performed. The refinement and demonstration of operational logistics along with the identification of supply and value-chain options will promote the concept of SRWC from basic research and development to the point of commercial uptake.
-
This dataset is a contribution to the development of a kelp distribution vector dataset. Bull kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) are important canopy-forming kelp species found in marine nearshore habitats on the West coast of Canada. Often referred to as a foundation species, beds of kelp form structural underwater forests that offer habitat for fishes and invertebrates. Despite its far-ranging importance, kelp has experienced a decline in the west coast of North America. The losses have been in response to direct harvest, increase in herbivores through the removal of predators by fisheries or diseases, increase in water turbidity from shoreline development as well as sea temperature change, ocean acidification, and increased storm activates. Understanding these impacts and the level of resilience of different kelp populations requires spatiotemporal baselines of kelp distribution. The area covered by this dataset includes the BC coast and extends to portions of the Washington and Alaska coasts. This dataset was created using 137 British Admiralty (BA) charts, including insets, with scales ranging from 1:6,080 to 1:500,000, created between 1858 and 1956. All surveys were based on triangulation, in which a sextant or theodolite was used to determine latitude and angles, while a chronometer was used to help determine longitude. First, each BA chart was scanned by the Canadian Hydrographic Service (CHS) using the CHS Colortrac large format scanner, and saved as a Tagged Image Format at 200 DPI, which was deemed sufficient resolution to properly visualize all the features of interest. Subsequently, the scanned charts were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping BA charts. Finally, the kelp features were digitized, and corresponding chart information (scale, chart number, title, survey start year, survey end year, and comments) was added as attributes to each feature. Given the observed differences in kelp feature representation at different scales, when digitizing kelp features, polygons were used to represent the discrete observations, and as such, they represent presence of kelp and not kelp area. Polygons were created by tracing around the kelp feature, aiming to keep the outline close to the stipe and blades. The accuracy of the location of the digitized kelp features was defined using a reliability criterion, which considers the location of the digitized kelp feature (polygon) in relation to the local depth in which the feature occurs. For this, we defined a depth threshold of 40 m to represent a low likelihood of kelp habitat in areas deeper than the threshold. An accuracy assessment of the digitized kelp features concluded that 99% of the kelp features occurred in expected areas within a depth of less than 40 m, and only about 1% of the features occurred completely outside of this depth.
-
The rationale for developing this product was the recognized need for a standard and adaptable marine grid that could be used for planning or analysis purposes across projects. This nested grid has five spatial resolutions: 8km, 4km, 2km, 1km, and 500m. It covers the extent of the EEZ on the Canadian Pacific coast, and further east in order to encompass the Fraser River Delta and Puget Sound to account for ecological importance.