Format

SHP

1805 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
From 1 - 10 / 1805
  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • The Oceans Act (1997) commits Canada to maintaining biological diversity and productivity in the marine environment. A key component of this is to identify areas that are considered ecologically or biologically significant. Fisheries and Oceans Canada (DFO) Science has developed guidance on the identification of Ecologically or Biologically Significant Areas (EBSAs) (DFO 2004) and has endorsed the scientific criteria of the Convention on Biological Diversity (CBD) for identifying ecologically or biologically significant marine areas as defined in Annex I of Decision IX/20 of its 9th Conference of Parties. These criteria were applied to the Newfoundland and Labrador (NL) Shelves Bioregion in two separate data-driven processes. The first process focused on the area north of the Placentia Bay-Grand Banks (PBGB) Large Ocean Management Area (LOMA) (DFO 2013). The second process focused on the PBGB area (DFO 2019), where EBSAs had previously been identified using a more Delphic approach (Templeman 2007). In both cases, an EBSA Steering Committee, comprised of experts in oceanography, ecosystem structure and function, taxa-specific life histories and Geographic Information Systems (GIS) guided the process by advising or aiding in the identification, collection, processing and analysis of data layers, as well as participating in the final selection of candidate EBSAs (Wells et al. 2017, Ollerhead et al. 2017, Wells et al. 2019). All information was compiled in a GIS and a hierarchical approach was used to review individual data layers and groupings of data layers. Peer review meetings were held for both processes, during which candidate EBSAs were reviewed and the final EBSAs were agreed upon and delineated. In the northern study area, a total of fifteen EBSAs were identified and described; three of these areas are primarily coastal areas; seven are in offshore areas; four EBSAs straddle coastal and offshore areas; and one is a transitory EBSA that follows the southern extent of pack ice. In the PBGB study area, fourteen EBSAs were identified in two different categories: seven based on coastal data and seven based on offshore data. In comparing the new PBGB EBSAs to those identified in 2007, nine of them overlap spatially and are based on similar features; however, there were some variations in the boundaries. Two of the EBSAs that were identified in 2007 were no longer considered EBSAs in 2017, but portions of both of these areas were captured in part by other EBSAs. Five new EBSAs were identified in areas not previously considered. References: DFO, 2004. Identification of Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Ecosystem Status Rep. 2004/006. DFO. 2013. Identification of additional Ecologically and Biologically Significant Areas (EBSAs) within the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2013/048. DFO. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area to Identify Ecologically and Biologically Significant Areas . DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/040. Ollerhead, L.M.N., Gullage, M., Trip, N., and Wells, N. 2017. Development of Spatially Referenced Data Layers for Use in the Identification and Delineation of Candidate Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/036. v + 38 p Templeman, N.D. 2007. Placentia Bay-Grand Banks Large Ocean Management Area Ecologically and Biologically Significant Areas. Can. Sci. Advis. Sec. Res. Doc. 2007/052: iii + 15 p. Wells, N.J., Stenson, G.B., Pepin, P., and Koen-Alonso, M. 2017. Identification and Descriptions of Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/013. v + 87 p. Wells, N., K. Tucker, K. Allard, M. Warren, S. Olson, L. Gullage, C. Pretty, V. Sutton-Pande and K. Clarke. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area of the Newfoundland and Labrador Shelves Bioregion to Identify and Describe Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/049. viii + 138 p.

  • This collection is a legacy product that is no longer supported. It may not meet current Government standards. The National Topographic Data Base (NTDB) comprises digital vector data sets that cover the entire Canadian landmass. The NTDB includes features such as watercourses, urban areas, railways, roads, vegetation, and relief. The organizational unit for the NTDB is the National Topographic System (NTS), based on the North American Datum of 1983 (NAD83). Each file (data set) consists of one NTS unit at either the 1:50,000 or 1:250,000 scale. Related Products: [NTDB Correction Matrices, 2003-2009](https://ouvert.canada.ca/data/en/dataset/b6d0c19c-27e3-4392-b21f-49b1eec95653)

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • This collection is a legacy product that is no longer supported. It may not meet current government standards. The North American Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. The North American Atlas data are intended for geographic display and analysis at the national and continental level. Any data outside of Canada, Mexico, and the United States of America included in the North American Atlas data sets is strictly to complete the context of the data.

  • The land division system used for describing the extent of oil and gas interests located in the Northwest Territories, Nunavut or in Canada's offshore area is defined in the Canada Oil and Gas Land Regulations. This land division system consists of a grid system divided into Grid Areas, Sections, and Units – all referenced to the North American Datum of 1927 (NAD27). This data provides the geo-spatial representation of the NAD27 Oil and Gas Grid Areas referenced to NAD83 Datum. The creation of the Oil and Gas Grid Areas geo-spatial file covers areas that are situated in the Northwest Territories, Nunavut or Sable Island as well as submarine areas, not within a province, in the internal waters of Canada, the territorial sea of Canada or the continental shelf of Canada beyond 200 nm zone. The NAD83 grid area boundaries are defined by geodesics joining the four grid area corners. For sections and units, the eastern and western grid area geodesic boundaries are partitioned into 40 equal segments. The northern and southern grid area geodesic boundaries are partitioned into 40, 32 or 24 equal segments, depending on latitude. All internal corners at the section and unit level are defined by the intersections of north-south and east-west geodesics joining corresponding partition points along the northern and southern, and eastern and western, grid area geodesic boundaries.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Herring Permanent Spawn Transects (geodatabase) - used for herring spawn survey program and spatial analysis/presentation of spawn data from Herring Stock Assessment Database (including creation of spawn polygons).

  • Data Sources: Banque informatisée des oiseaux de mer au Québec (BIOMQ: ECCC-CWS Quebec Region) Atlantic Colonial Waterbird Database (ACWD: ECCC-CWS Atlantic Region).. Both the BIOMQ and ACWD contain records of individual colony counts, by species, for known colonies located in Eastern Canada. Although some colonies are censused annually, most are visited much less frequently. Methods used to derive colony population estimates vary markedly among colonies and among species. For example, census methods devised for burrow-nesting alcids typically rely on ground survey techniques. As such, they tend to be restricted to relatively few colonies. In contrast, censuses of large gull or tern colonies, which are geographically widespread, more appropriately rely on a combination of broad-scale aerial surveys, and ground surveys at a subset of these colonies. In some instances, ground surveys of certain species are not available throughout the study area. In such cases, consideration of other sources, including aerial surveys, may be appropriate. For example,data stemming from a 2006 aerial survey of Common Eiders during nesting, conducted by ECCC-CWS in Labrador, though not yet incorporated in the ACWD, were used in this report. It is important to note that colony data for some species, such as herons, are not well represented in these ECCC-CWS databases at present. Analysis of ACWD and BIOMQ data (ECCC-CWS Quebec and Atlantic Regions): Data were merged as temporal coverage, survey methods and geospatial information were comparable. Only in cases where total counts of individuals were not explicitly presented was it necessary to calculate proxies of total counts of breeding individuals (e.g., by doubling numbers of breeding pairs or of active nests). Though these approaches may underestimate the true number of total individuals associated with a given site by failing to include some proportion of the non-breeding population (i.e., visiting adult non-breeders, sub-adults and failed breeders), tracking numbers of breeding individuals (or pairs) is considered to be the primary focus of these colony monitoring programs.In order to represent the potential number of individuals of a given species that realistically could be and may historically have been present at a given colony location (see section 1.1), the maximum total count obtained per species per site since 1960 was used in the analyses. In the case of certain species,especially coastal piscivores (Wires et al. 2001; Cotter et al. 2012), maxima reached in the 1970s or 1980s likely resulted from considerable anthropogenic sources of food, and these levels may never be seen again. The effect may have been more pronounced in certain geographic areas. Certain sites once used as colonies may no longer be suitable for breeding due to natural and/or human causes, but others similarly may become suitable and thus merit consideration in long-term habitat conservation planning. A colony importance index (CII) was derived by dividing the latter maximum total count by the potential total Eastern Canadian breeding population of that species (the sum of maximum total counts within a species, across all known colony sites in Eastern Canada). The CII approximates the proportion of the total potential Eastern Canadian breeding population (sum of maxima) reached at each colony location and allowed for an objective comparison among colonies both within and across species. In some less-frequently visited colonies, birds (cormorants, gulls, murres and terns, in particular) were not identified to species. Due to potential biases and issues pertaining to inclusion of these data, they were not considered when calculating species’ maximum counts by colony for the CII. The IBA approach whereby maximum colony counts are divided by the size of the corresponding actual estimated population for each species (see Table 3.1.2; approximate 1% continental threshold presented) was not used because in some instances individuals were not identified to species at some sites, or population estimates were unavailable.Use of both maxima and proportions of populations (or an index thereof) presents contrasting, but complementary, approaches to identifying important colonial congregations. By examining results derived from both approaches, attention can be directed at areas that not only host large numbers of individuals, but also important proportions of populations. This dual approach avoids attributing disproportionate attention to species that by their very nature occur in very large colonies (e.g., Leach’s Storm Petrel) or conversely to colonies that host important large proportions of less-abundant species (Roseate Tern, Caspian Tern, Black-Headed Gull, etc.), but in smaller overall numbers. Point Density Analysis (ArcGIS Spatial Analyst) with kernel estimation, and a 10-km search radius,was used to generate maps illustrating the density of colony measures (i.e., maximum count by species,CII by species), modelled as a continuous field (Gatrell et al. 1996). Actual colony locations were subsequently overlaid on the resulting cluster map. Sites not identified as important should not be assumed to be unimportant.