SHP
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Many cetacean species were depleted in Canadian Pacific waters by commercial whaling, which ended in 1967. Although some populations have since shown evidence of recovery, there is limited information about the current abundance and geographic distribution of many species, particularly in difficult-to-survey offshore regions. This lack of baseline data hampers conservation status assessments, including estimating population-level impacts of anthropogenic activities. From July to early September 2018, we conducted ship-based surveys of cetaceans throughout the coastal and offshore waters of British Columbia. Density surface modelling (DSM) was used to produce spatially-explicit abundance estimates and distribution maps for four commonly-encountered cetacean species: the humpback whale (Megaptera novaeangliae), fin whale (Balaenoptera physalus), Dall’s porpoise (Phocoenoides dalli) and harbour porpoise (Phocoena phocoena). We estimated abundances of 7,030 (95% CI = 5,733-8,620) humpback whales, 2,893 (95% CI = 2,171-3,855) fin whales, 23,692 (95% CI = 19,121-29,356) Dall’s porpoises and 5,207 (95% CI = 2,769-9,793) harbour porpoises throughout Canadian Pacific waters. Our results complement design-based abundance estimates calculated from the same survey data, and can be compared with past habitat modelling studies and historical whaling catch data to estimate the extent of recovery of previously harvested populations. The return of these predators to habitats from which they were previously extirpated will have important ecosystem-level implications. The DSM results can contribute to calculations of Potential Biological Removal estimates to inform fisheries bycatch, as well as providing spatial data that can be used to assess the risk of entanglements, ship strikes, acoustic disturbance, and other anthropogenic threats. This dataset contains model-predicted densities of four commonly-encountered cetacean species (humpback whale, fin whale, Dall's porpoise and harbour porpoise) that were estimated using ship-based, visual survey data collected during the Pacific Region International Survey of Marine Megafauna (PRISMM) in July-August of 2018. Abundance of each species (where relevant) is provided for three gridded strata (25 km2 cell size) in the Pacific Region: one for the offshore, extending to Canada’s exclusive economic zone (EEZ), and two for coastal areas (the North Coast and the Salish Sea).
-
Pepin et al. (2014) stated that three nested spatial scales were identified as relevant for the development of ecosystem summaries and management plans: Bioregion, Ecosystem Production Unit (EPU), and Ecoregion. A bioregion is composed by one or more EPUs, while an EPU consists of a combination of ecoregions, which represent elements with different physical and biological characteristics based on the analytical criteria applied. Pepin et al. (2014) reported on the consolidation of data and analyses of ecoregion structure for the continental shelf areas from the Labrador Sea to the mid-Atlantic Bight and provided recommendations on the definition of EPUs in the NAFO Convention Area. The results of two K-means clustering analyses (one geographically constrained and one un-constrained) and expert knowledge (including and considering location of ecoregions, knowledge of the distribution of major marine resources and fish stocks, and geographic proximity for delineation/definition of potential management units) served as guides for evaluation by NAFO’s (North Atlantic Fisheries Organization) working group on ecosystem science and assessments (WG-ESA). The final consensus from the discussions identified eight (8) major EPUs that can serve as practical candidate management units (from the 50 m isobaths, where research vessel data were available, seaward to the 1500 m isobaths) that consist of the Labrador Shelf (NAFO subareas 2GH), the northeast Newfoundland Shelf (subareas 2J3K), the Grand Banks (subareas 3LNO), Flemish Cap (subarea 3M), the Scotian Shelf (subareas 4VnsWX), Georges Bank (parts of subareas 5Ze and 5Zw), the Gulf of Maine (subarea 5Y and part of 5Ze) and the mid-Atlantic Bight (part of subarea 5Zw and subareas 6ABC). Southern Newfoundland (subarea 3Ps) was not included in the original analysis because fall survey data were unavailable. However, it was later added as an EPU after additional analysis of the fish community structure and trends using survey data from the spring, which indicated that this area is heavily influenced by the surrounding EPUs (NAFO 2015). The proposed candidate management units correspond to the EPUs that define major areas within the bioregions which contain a reasonably well defined food web/production system. The working group noted that the consensus solution represents a compromise that aims to define management units based on the boundaries of existing NAFO subareas that are appropriate for estimation of ecosystem and fishery production. References: NAFO. 2015. Report of the 8th Meeting of the NAFO Scientific Council (SC) Working Group on Ecosystem Science and Assessment (WGESA). 17-26 November 2015, Dartmouth, Canada. NAFO SCS Doc. 15/19. Pepin, P., Higdon, J., Koen-Alonso, M., Fogarty, M., and N. Ollerhead. 2014. Application of ecoregion analysis to the identification of Ecosystem Production Units (EPUs) in the NAFO Convention Area. NAFO SCR Doc. 14/069.
-
Fisheries landings and effort mapping of the inshore lobster fishery on the DFO Maritimes Region statistical grid (2012-2014). This report describes an analysis of Maritimes Region inshore lobster logbook data reported at a grid level, including Bay of Fundy Grey Zone data reported at the coordinate level. Annual and composite (2012–2014) grid maps were produced for landings, number of license-days fished, number of trap hauls, and the same series standardized by grid area, as well as maps of catch weight per number of trap hauls as an index of catch per unit effort (CPUE). Spatial differences in fishing pressure, landings, and CPUE are indicated, and potential mapping applications are outlined. Mapping the distribution and intensity of inshore lobster fishing activity has management applications for spatial planning and related decision support. The lack of region-wide latitude and longitude coordinates for lobster effort and landings limits the utility of commercial logbook data for marine spatial planning purposes.
-
This project was completed by the Pelagics Section in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). As part of the Coastal Environmental Baseline Program, a historical research gillnet program was reinitiated in Placentia Bay. Four local fishers each set fleets of standardized nets to catch herring for 6 weeks during the spring. The data collected was used to update a time series and provide advice at the herring stock assessment in October 2022. This program was continued in the 22/23 fiscal year. Data collected from this program included gillnet catch rates, bycatch, temperature and biological (herring) samples; from which biological metrics such as length, weight, sex, maturity and age were measured. This record contains catch data for 2018 to 2021, as well as biological data from 2018.
-
Hydrogeological Regions provide a framework to introduce the regional hydrogeology of Canada and to connect apparently disparate studies into a broader framework. The hydrological regions are first order areas used to capture and summarize data that will help develop more detailed profiles of each region. Comparison of findings within and between regions will allow scalable extension to sub-regional and watershed scale mapping. Canada has been classified into nine principal hydrogeological regions. Each region is described briefly based on the following five hydrogeological characteristics (Heath, 1984): system components and geometry; water-bearing openings; rock matrix composition; storage and transmission; recharge/ discharge. The hydrogeological classification emphasizes major geological provinces and rock formations. Fundamental water-bearing openings and rock matrix properties help determine the quantity (storage), flux (transmission), and composition of formation waters. These same properties and any overlying sediment cover affect recharge/ discharge rates for regional formations. While regional attributes are general, a simple aquifer mapping scheme can further describe the nature and character of aquifers in each region. For example, general groundwater settings across the country could be described as has been done by USGS principal aquifers [1]. Thus the regional framework can potentially link from national scales to watershed scales by identifying typical aquifer types based on readily available geological maps that use water-bearing character as a common attribute. The nine hydrogeological regions include: Cordillera Mountains with thin sediment over fractured sedimentary, igneous and metamorphic rocks of Precambrian to Cenozoic age. Intermontane valleys are underlain by glacial and alluvial deposits of Pleistocene age. Plains (Western Sedimentary Basin) Region-wide basin of sub-horizontal Paleozoic to Cenozoic sedimentary rocks are overlain by thick glacial deposits filling buried valleys. Incised post-glacial valleys provide local relief. Shallow gas, coal, and brines may occur. Canadian Shield Undulating region of thin glacial sediment overlying complex deformed, fractured PreCambrian igneous, metamorphic and sedimentary rocks. Region contains several terrains: sedimentary basins, structural belts, and glacial-lacustrine basins. Hudson Bay (Moose River) Basin Sedimentary basin of Paleozoic to Mesozoic sub horizontal carbonate and clastic sediment covered by surficial deposits, with low relief and poor drainage. Southern Ontario Eastern Great Lakes region is underlain by gently-dipping Paleozoic, carbonate, clastic and gypsum-salt strata overlain by glacial sediments up to 200 m thick with tunnel valleys. Karst, bedrock valleys, shallow gas and brines are also important components. St. Lawrence Lowlands Lowlands underlain by shallow-dipping Paleozoic sedimentary rocks and thick glacial sediment in glacial-marine basins. Appalachian and Precambrian uplands discharge water to valleys. Shallow gas and saltwater intrusion are possible. Appalachia Upland to mountainous region with thin surficial sediment on folded Paleozoic sedimentary and igneous rocks. Range of rock types yields a wide range of water compositions. Valleys contain important alluvial aquifers. Maritimes Basin Lowlands with flat-lying, Carboniferous clastic , salt, and gypsum rocks contain shallow coal deposits. Surface glacial sediment is thin and discontinuous. Salt water intrusion is possible. Permafrost Arctic islands and most areas north of 60o contain frozen ground affects on groundwater flow. Diverse topography and geology define sub-regions of sedimentary basins and crystalline rocks. Glacial sediment is thin, discontinuous; local peat accumulations are significant.
-
DFO’s Oceans and Coastal Management Division (OCMD) in the Maritimes Region has updated its fisheries landings maps for 2010–2014. These maps will be used for decision making in coastal and oceans management, including mitigating human use conflicts, informing environmental emergency response operations and protocols, informing Marine Stewardship Council certification processes, planning marine protected area networks, assessing ecological risks, and monitoring compliance and threats in coral and sponge closures and Marine Protected Areas. Fisheries maps were created to identify important fishing areas using aggregate landed weight (kg) per 2 x 2-minute grid cell for selected species/gear types. This dataset has been filtered to comply with the Government of Canada's privacy policy. Privacy assessments were conducted to identify NAFO unit areas containing data with less than five vessel IDs, license IDs and fisher IDs. If this threshold was not met, catch weight locations were withheld from these unit areas to protect the identity or activity of individual vessels or companies. Maps were created for the following species/gear types: 1. Atlantic Halibut 2. Bluefin Tuna 3. Bottom Longline Groundfish 4. Bottom Trawl Groundfish 5. Cod 6. Cod, Haddock, Pollock 7. Cusk 8. Dogfish 9. Flatfish 10. Gillnet Groundfish 11. Greenland Halibut 12. Groundfish 13. Groundfish (quarterly composites Q1, Q2, Q3, Q4) 14. Hagfish 15. Herring 16. Large Pelagics 17. Mackerel 18. Monkfish 19. Offshore Clam 20. Offshore Lobster 21. Grey Zone Lobster 22. Other Crab 23. Other Tuna 24. Pollock 25. Porbeagle, Mako and Blue Shark 26. Red Hake 27. Redfish 28. Scallop 29. Scallop (quarterly composites Q1, Q2, Q3, Q4) 30. Sculpin 31. Sea Urchin 32. Shrimp 33. Silver Hake 34. Skate 35. Snow Crab 36. Squid 37. Swordfish 38. White Hake 39. Wolffish
-
Water temperature and water level are significant environmental factors affecting ecology of anadromous fish. Large-scale freshwater monitoring networks remain sparse, yet environmental protocols rely heavily on water temperature and water levels to assist decision making on river closures. Our river monitoring project in Newfoundland and Labrador provides river water temperature and river water level for salmon rivers across the province. 72 temperature loggers are deployed across 24 river systems in Newfoundland and Labrador. Temperature loggers are deployed in approximately 30 cm of water and remain in river year-round. Loggers consist of Onset level loggers, tidbit loggers, and pendants or Innovasea minilogs. Some loggers are deployed in duplicate at locations to provide data redundancy in event of equipment loss or failure. Equipment is monitored throughout the season to ensure proper placement in water columns, with downloads taking place during monitoring trips.
-
The Oceans Act (1997) commits Canada to maintaining biological diversity and productivity in the marine environment. A key component of this is to identify areas that are considered ecologically or biologically significant. Fisheries and Oceans Canada (DFO) Science has developed guidance on the identification of Ecologically or Biologically Significant Areas (EBSAs) (DFO 2004) and has endorsed the scientific criteria of the Convention on Biological Diversity (CBD) for identifying ecologically or biologically significant marine areas as defined in Annex I of Decision IX/20 of its 9th Conference of Parties. These criteria were applied to the Newfoundland and Labrador (NL) Shelves Bioregion in two separate data-driven processes. The first process focused on the area north of the Placentia Bay-Grand Banks (PBGB) Large Ocean Management Area (LOMA) (DFO 2013). The second process focused on the PBGB area (DFO 2019), where EBSAs had previously been identified using a more Delphic approach (Templeman 2007). In both cases, an EBSA Steering Committee, comprised of experts in oceanography, ecosystem structure and function, taxa-specific life histories and Geographic Information Systems (GIS) guided the process by advising or aiding in the identification, collection, processing and analysis of data layers, as well as participating in the final selection of candidate EBSAs (Wells et al. 2017, Ollerhead et al. 2017, Wells et al. 2019). All information was compiled in a GIS and a hierarchical approach was used to review individual data layers and groupings of data layers. Peer review meetings were held for both processes, during which candidate EBSAs were reviewed and the final EBSAs were agreed upon and delineated. In the northern study area, a total of fifteen EBSAs were identified and described; three of these areas are primarily coastal areas; seven are in offshore areas; four EBSAs straddle coastal and offshore areas; and one is a transitory EBSA that follows the southern extent of pack ice. In the PBGB study area, fourteen EBSAs were identified in two different categories: seven based on coastal data and seven based on offshore data. In comparing the new PBGB EBSAs to those identified in 2007, nine of them overlap spatially and are based on similar features; however, there were some variations in the boundaries. Two of the EBSAs that were identified in 2007 were no longer considered EBSAs in 2017, but portions of both of these areas were captured in part by other EBSAs. Five new EBSAs were identified in areas not previously considered. References: DFO, 2004. Identification of Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Ecosystem Status Rep. 2004/006. DFO. 2013. Identification of additional Ecologically and Biologically Significant Areas (EBSAs) within the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2013/048. DFO. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area to Identify Ecologically and Biologically Significant Areas . DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/040. Ollerhead, L.M.N., Gullage, M., Trip, N., and Wells, N. 2017. Development of Spatially Referenced Data Layers for Use in the Identification and Delineation of Candidate Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/036. v + 38 p Templeman, N.D. 2007. Placentia Bay-Grand Banks Large Ocean Management Area Ecologically and Biologically Significant Areas. Can. Sci. Advis. Sec. Res. Doc. 2007/052: iii + 15 p. Wells, N.J., Stenson, G.B., Pepin, P., and Koen-Alonso, M. 2017. Identification and Descriptions of Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/013. v + 87 p. Wells, N., K. Tucker, K. Allard, M. Warren, S. Olson, L. Gullage, C. Pretty, V. Sutton-Pande and K. Clarke. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area of the Newfoundland and Labrador Shelves Bioregion to Identify and Describe Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/049. viii + 138 p.
-
This dataset is a contribution to the development of a kelp distribution vector dataset. Bull kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) are important canopy-forming kelp species found in marine nearshore habitats on the West coast of Canada. Often referred to as a foundation species, beds of kelp form structural underwater forests that offer habitat for fishes and invertebrates. Despite its far-ranging importance, kelp has experienced a decline in the west coast of North America. The losses have been in response to direct harvest, increase in herbivores through the removal of predators by fisheries or diseases, increase in water turbidity from shoreline development as well as sea temperature change, ocean acidification, and increased storm activates. Understanding these impacts and the level of resilience of different kelp populations requires spatiotemporal baselines of kelp distribution. The area covered by this dataset includes the BC coast and extends to portions of the Washington and Alaska coasts. This dataset was created using 137 British Admiralty (BA) charts, including insets, with scales ranging from 1:6,080 to 1:500,000, created between 1858 and 1956. All surveys were based on triangulation, in which a sextant or theodolite was used to determine latitude and angles, while a chronometer was used to help determine longitude. First, each BA chart was scanned by the Canadian Hydrographic Service (CHS) using the CHS Colortrac large format scanner, and saved as a Tagged Image Format at 200 DPI, which was deemed sufficient resolution to properly visualize all the features of interest. Subsequently, the scanned charts were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping BA charts. Finally, the kelp features were digitized, and corresponding chart information (scale, chart number, title, survey start year, survey end year, and comments) was added as attributes to each feature. Given the observed differences in kelp feature representation at different scales, when digitizing kelp features, polygons were used to represent the discrete observations, and as such, they represent presence of kelp and not kelp area. Polygons were created by tracing around the kelp feature, aiming to keep the outline close to the stipe and blades. The accuracy of the location of the digitized kelp features was defined using a reliability criterion, which considers the location of the digitized kelp feature (polygon) in relation to the local depth in which the feature occurs. For this, we defined a depth threshold of 40 m to represent a low likelihood of kelp habitat in areas deeper than the threshold. An accuracy assessment of the digitized kelp features concluded that 99% of the kelp features occurred in expected areas within a depth of less than 40 m, and only about 1% of the features occurred completely outside of this depth.
-
The Permafrost Information Network (PIN) geotechnical borehole database combines existing database compilations into a standard structure. The standardized database was created to be accessible from the PIN web application as a data layer. Further information regarding data compilation can be accessed from the PIN web application.
Arctic SDI catalogue