Keyword

Imagery base maps earth cover

352 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 352
  • Categories  

    The “Soils of Canada, Derived” national scale thematic datasets display the distribution and areal extent of soil attributes such as drainage, texture of parent material, kind of material, and classification of soils in terms of provincial Detailed Soil Surveys (DDS) polygons, Soil Landscape Polygons (SLCs), Soil Order and Great Group. The relief and associated slopes of the Canadian landscape are depicted on the local surface form thematic dataset. The purpose of the “Soils of Canada, Derived” series is to facilitate the cartographic display and basic queries of the Soil Landscapes of Canada at a national scale. For more detailed or sophisticated analysis, users should investigate the full “Soil Landscapes of Canada” product.

  • This is a Mosaic of Canada which is made from 121 images captured by Canadian satellite RADARSAT-2. These images were acquired from May 1, 2013 to June 1, 2013. The color variation represents the changes in soil texture, roughness and the level of soil moisture. (Credit: RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd. (2013) - All Rights Reserved. RADARSAT is an official mark of the Canadian Space Agency.)

  • Categories  

    This dataset includes the extent of the boreal forest as well as the extent of managed boreal forest worldwide. The extent of boreal forest was produced from Brandt et al. (2013) and a modified version of Goudilin (1987). Managed forest was defined as suggested by IPCC (2003) using data from FAFS (2009), Gauthier et al. (2014), See et al. (2015) and AICC maps. The extent of managed forest mostly includes areas managed for wood production, areas protected from large-scale disturbances as well as formal protected areas. Both boreal forest extent and managed boreal forest extent are available in raster and vector data. Please cite this data product as: Boucher, D., D.G. Schepaschenko, S. Gauthier, P. Bernier, T. Kuuluvainen, A. Z. Shvidenko. 2024. World boreal forest and managed boreal forest extent. DOI: 10.23687/88d70716-2600-4995-8d5f-86f96e383abf These data were presented in the following article: Gauthier, S., P. Bernier, T. Kuuluvainen, A. Z. Shvidenko, D. G. Schepaschenko. 2015. Boreal forest health and global change. Science 349:819-822. DOI: 10.1126/science.aaa9092 References: J. P. Brandt, M. D. Flannigan, D. G. Maynard, I. D. Thompson, W. J. A. Volney, Environ. Rev. 21, 207–226 (2013) I. S. Goudilin, Landscape map of the USSR. Legend to the landscape map of the USSR. Scale 1:2 500 000. Moscow, Ministry of Geology of the USSR (1987) [in Russian]. Inter-governmental panel on climate change (IPCC). J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, et al., Eds., Good practice guidance for land use, land-use change and forestry (IPCC/NGGIP/IGES, Kanawaga, 2003) Federal Agency of Forest Service (FAFS), Forest Fund of the Russian Federation (state by 1 January 2009) (Federal Agency of Forest Service, Moscow, 2009) [in Russian] S. Gauthier et al., Environ. Rev. 22, 256–285 (2014). See et al., Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki. Technological Forecasting and Social Change. (2015). doi:10.1016/j.techfore.2015.03.002 Alaska Interagency Coordination Center (AICC). Fire Information. https://fire.ak.blm.gov/content/maps/aicc/Large%20Maps/Alaska_Fire_Management_Options.pdf (the version of 2014 was used)

  • Categories  

    This land cover data set was derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor operating on board the United States National Oceanic and Atmospheric Administration (NOAA) satellites. Information on the NOAA series of satellites can be found at www.noaa.gov/satellites.html The vegetation and land cover information set has been classified into twelve categories. Information on the classification of the vegetation and land cover, raster to vector conversion, generalization for cartographic presentations is included in the paper "The Canada Vegetation and Land Cover: A Raster and Vector Data Set for GIS Applications - Uses in Agriculture" (https://geogratis.cgdi.gc.ca/download/landcover/scale/gis95ppr.pdf). A soil quality evaluation was obtained by cross-referencing the AVHRR information with Census of Agriculture records and biophysical (Soil Landscapes of Canada) data and is also included in the above paper. AVHRR Land Cover Data approximates a 1:2M scale and was done originally for Agriculture Canada. The projection used is Lambert Conformal Conic (LCC) 49/77 with origin at 49N 95W.

  • Categories  

    The AAFC Infrastructure Flood Mapping in Saskatchewan 20 centimeter colour orthophotos is a collection of georeferenced color digital orthophotos with 20 cm pixel size. The imagery was delivered in GeoTIF and ECW formats. The TIF and ECW mosaics were delivered in the same 1 km x 1 km tiles as the LiDAR data, and complete mosaics for each area in MrSID format were also provided. The digital photos were orthorectified using the ground model created from the DTM Key Points. With orthorectification, only features on the surface of the ground are correctly positioned in the orthophotos. Objects above the surface of the ground, such as building rooftops and trees, may contain horizontal displacement due to image parallax experienced when the photos were captured. This is sometimes apparent along the cut lines between photos. For positioning of above-ground structures it is recommended to use the LiDAR point clouds for accurate horizontal placement.

  • Categories  

    The Canada Centre for Mapping and Earth Observation (CCMEO) has created a 30m resolution radar mosaic of Canada's landmass from the RADARSAT Constellation Mission (RCM). This product highlights different types of radar interaction with the surface, which can assist the interpretation and study of land cover on a national scale. The national mosaic is made up of 3222 RCM images acquired between August 2023 and February 2024. (Credit: RADARSAT Constellation Mission imagery © Government of Canada [2024]. RADARSAT is an official mark of the CSA.)

  • Categories  

    The “Land Cover for Agricultural Regions of Canada (circa 2000), Date Index” dataset is a geospatial data layer containing polygon features representing the Landsat scene number, associated dates and other products that were incorporated into the thematic land cover classification which is contained within the AAFC Landcover (circa 2000) product.

  • Categories  

    IBL - Imagery, basemaps, and land cover (imageryBaseMapsEarthCover) Basemaps. For example, resources describing land cover, topographic maps, and classified and unclassified images

  • Categories  

    Data include a collection of annual land cover maps derived from MODIS 250 m spatial resolution remotely sensed imagery for the period 2000 to 2011. Processing of the time series was designed to reduce the occurrence of false change between maps. The method was based on change updating as described in Pouliot et al. (2011, 2013). Change detection accounted for both abrupt changes such as forest harvesting and more gradual changes such as recurrent insect defoliation. To determine the new label for a pixel identified as change, an evidential reasoning approach was used to combine spectral and contextual information. The 2005 MODIS land cover of Canada at 250 m spatial resolution described in Latifovic et al. (2012) was used as the base map. It contains 39 land cover classes, which for time series development was considered too detailed and was reduced to 25 and 19 class versions. The 19 class version corresponds to the North America Land Change Monitoring System (NALCMS) Level 2 legend as described in Latifovic et al. (2012). Accuracy assessment of time series is difficult due to the need to assess many maps. For areas of change in the time series accuracy was found to be 70% based on the 19 class thematic legend. This time series captures the spatial distribution of dominant land cover transitions. It is intended for use in modeling, development of remote sensing products such as leaf area index or land cover based albedo retrievals, and other exploratory analysis. It is not appropriate for use in any rigorous reporting or inventory assessments due to the accuracy of the land cover classification and uncertainty as to the capture of all relevant changes for an application.

  • Categories  

    Data include a collection of annual land cover maps derived from MODIS 250 m spatial resolution remotely sensed imagery for the period 2000 to 2011. Processing of the time series was designed to reduce the occurrence of false change between maps. The method was based on change updating as described in Pouliot et al. (2011, 2013). Change detection accounted for both abrupt changes such as forest harvesting and more gradual changes such as recurrent insect defoliation. To determine the new label for a pixel identified as change, an evidential reasoning approach was used to combine spectral and contextual information. The 2005 MODIS land cover of Canada at 250 m spatial resolution described in Latifovic et al. (2012) was used as the base map. It contains 39 land cover classes, which for time series development was considered too detailed and was reduced to 25 and 19 class versions. The 19 class version corresponds to the North America Land Change Monitoring System (NALCMS) Level 2 legend as described in Latifovic et al. (2012). Accuracy assessment of time series is difficult due to the need to assess many maps. For areas of change in the time series accuracy was found to be 70% based on the 19 class thematic legend. This time series captures the spatial distribution of dominant land cover transitions. It is intended for use in modeling, development of remote sensing products such as leaf area index or land cover based albedo retrievals, and other exploratory analysis. It is not appropriate for use in any rigorous reporting or inventory assessments due to the accuracy of the land cover classification and uncertainty as to the capture of all relevant changes for an application. NOTE: To see this entire product in the map viewer, use a base map in the "World" section (EPSG: 3857).