Topic
 

climatologyMeteorologyAtmosphere

518 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 518
  • Categories  

    Gögnin innhalda staðsetningu veðurstöðva sem eru í eigu Vegagerðarinnar og staðsettar eru við þjóðvegi en einnig veðurstöðvar í eigu Veðurstofunnar og annarra.

  • Categories  

    An accumulated value of heat degrees that the average temperature is above a specified threshold, 5°C for cool season crops. This condition must be maintained for at least 5 consecutive days in order for EGDD to be accumulated (egdd_cool). Week 1 and week 2 forecasted index is available daily from April 1 to October 31. Week 3 and week 4 forecasted index is available weekly (Thursday) from April 1 to October 31. Cumulative heat-energy satisfies the essential requirement of field crop growth and development towards a high yield and good quality of agricultural crop products. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: the number of large fires (>200 ha) across Canada for a reference period (1981-2010). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The Homogenized Surface Wind Speed data consist of monthly, seasonal and annual means of hourly wind speed (kilometres per hour) at standard 10 metre level for 156 locations in Canada. Homogenized climate data incorporate adjustments (derived from statistical procedures) to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation. The time periods of the data vary by location, with the oldest data available from 1953 at some stations to the most recent update in 2014. Data availability over most of the Canadian Arctic is restricted to 1953 to present. The data will continue to be updated every few years (as time permits).

  • Categories  

    Environment and Climate Change Canada’s (ECCC) Climate Research Division (CRD) and the Pacific Climate Impacts Consortium (PCIC) previously produced statistically downscaled climate scenarios based on simulations from climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) in 2015. ECCC and PCIC have now updated the CMIP5-based downscaled scenarios with two new sets of downscaled scenarios based on the next generation of climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6). The scenarios are named Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6) and Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6). CMIP6 climate projections are based on both updated global climate models and new emissions scenarios called “Shared Socioeconomic Pathways” (SSPs). Statistically downscaled datasets have been produced from 26 CMIP6 global climate models (GCMs) under three different emission scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), with PCIC later adding SSP3-7.0 to the CanDCS-M6 dataset. The CanDCS-U6 was downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2) procedure, and CanDCS-M6 was downscaled using the N-dimensional Multivariate Bias Correction (MBCn) method. The CanDCS-U6 dataset was produced using the same downscaling target data (NRCANmet) as the CMIP5-based downscaled scenarios, while the CanDCS-M6 dataset implements a new target dataset (ANUSPLIN and PNWNAmet blended dataset). Statistically downscaled individual model output and ensembles are available for download. Downscaled climate indices are available across Canada at 10km grid spatial resolution for the 1950-2014 historical period and for the 2015-2100 period following each of the three emission scenarios. Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impacts assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with finer spatial scale. Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.

  • Categories  

    Probability of total precipitation above 50mm over the forecast period (pweek50_prob). Week 1 and week 2 forecasted probability is available daily from September 1 to August 31. Week 3 and week 4 forecasted probability is available weekly (Thursday) from September 1 to August 31. Precipitation (moisture availability) establishes the economic yield potential and product quality of field crops. Both dry and wet precipitation extremes have the ability to inhibit proper crop growth. The greatest daily precipitation index covers the risk of excessive precipitation in the short term, while the other indices pertain to longer term moisture availability. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.

  • Categories  

    The probability (likelihood) of ice freeze days, the number of days in the forecast period with a minimum temperature below the frost temperature, -5°C for herbaceous crops over the non-growing season (ifd_herb_nogrow_prob). Week 1 and week 2 forecasted probability is available daily from November 1 to March 31. Week 3 and week 4 forecasted probability is available weekly (Thursday) from November 1 to March 31. Over-wintering crops are biennial and perennial field crops such as herbaceous plants (strawberry, alfalfa, timothy, and many other forage crops) and woody fruit trees (apple, pear, peach, cherry, plum, apricot, chestnut, pecan, grape, etc.). These crops normally grow and develop in the growing season and become dormant in the non-growing season. However, extreme weather and climate events such as cold waves in the growing season and ice freezing events during the winter are a major constraint for their success of production and survival in Canada. The winter survival of these plants depends largely on agrometeorological conditions from late autumn to early spring, especially ice-freezing damage during the winter season. The optimum temperature for such crops is 25°C. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily basis.

  • Categories  

    This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC’s National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). The drought areas are classified as follows: D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years; D1 (Moderate Drought) – represents an event that occurs every 5-10 years; D2 (Severe Drought) – represents an event that occurs every 10-20 years; D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and D4 (Exceptional Drought) – represents an event that occurs every 50 years. Impact lines highlight areas that have been physically impacted by drought. Impact labels specify the longitude and magnitude of impacts. The impact labels are classified as follows: S – Short-Term, typically less than 6 months (e.g. agriculture, grasslands). L – Long-Term, typically more than 6 months (e.g. hydrology, ecology).

  • Categories  

    The Agri-Environmental Indicator Soil Erosion Risk dataset provides the estimated risk of soil loss from the combined effects of wind, water, and tillage for Soil Landscapes of Canada agricultural areas for each year since 1981 to 2021.