Topic
 

imageryBaseMapsEarthCover

445 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 445
  • Categories  

    The Moderate Resolution Imaging Spectroradiometer (MODIS ) is one of the most sophisticated sensors that is used in a wide range of applications related to land, ocean and atmosphere. It has 36 spectral channels with spatial resolution varying between 250 m and 1 km at nadir. MODIS channels 1 (B1, visible) and 2 (B2, near infrared) are available at 250 m spatial resolution, an additional five channels for terrestrial applications (bands B3 to B7) are available at 500 m spatial resolution, the other twenty-nine channels not included in this data set capture images with a spatial resolution of 1 km. The MODIS record begins in March 2000 and extends to present with daily measurements over the globe. This level 3 product for Canada was created from the following original Level 1 (1B) MODIS data (collection 5): a) MOD02QKM - Level 1B 250 m swath data, 5 min granules; b ) MOD02HKM - level 1B , 500 m swath data, 5 min granules; c) MOD03 - level 1 geolocation information, 1 km swath data, 5 min granules. All these data are available from the DAAC Earth Observing System Data Gateway (NASA http://ladsweb.nascom.nasa.gov/data/search.html). The terrestrial channels MODIS (B3 to B7) at 500 m spatial resolution were reduced to 250 m with an adaptive regression system and normalization described in Trishchenko et al. (2006, 2009), and the data were mapped using a Lambert Conformal Conic (LCC ) projection (Khlopenkov et al., 2008). These data were combined to form pan-Canadian images using a technique for detection of clear sky, clouds and cloud shadows with a maximum interval of 10 days (Luo et al., 2008). Atmospheric and sun-sensor geometry corrections have not been applied. For each date, data include forward and backward scattering observations as separate files. This allows data to be optimized for a given application. For general use, data from either forward or backward scattering or both should be used. Future release of the MODIS time series will correct the forward and backward scattering geometry to provide a single best observation for each pixel.

  • Categories  

    The 2000 AAFC Land Use is a culmination and curated metaanalysis of several high-quality spatial datasets produced between 1990 and 2021 using a variety of methods by teams of researchers as techniques and capabilities have evolved. The information from the input datasets was consolidated and embedded within each 30m x 30m pixel to create consolidated pixel histories, resulting in thousands of unique combinations of evidence ready for careful consideration. Informed by many sources of high-quality evidence and visual observation of imagery in Google Earth, we apply an incremental strategy to develop a coherent best current understanding of what has happened in each pixel through the time series.

  • Categories  

    Each pixel value corresponds to the day-of-week (1-7) from which the Weekly Best-Quality NDVI retrieval is obtained (1 = Monday, 7 = Sunday).

  • Categories  

    The “Soils of Canada, Derived” national scale thematic datasets display the distribution and areal extent of soil attributes such as drainage, texture of parent material, kind of material, and classification of soils in terms of provincial Detailed Soil Surveys (DDS) polygons, Soil Landscape Polygons (SLCs), Soil Order and Great Group. The relief and associated slopes of the Canadian landscape are depicted on the local surface form thematic dataset. The purpose of the “Soils of Canada, Derived” series is to facilitate the cartographic display and basic queries of the Soil Landscapes of Canada at a national scale. For more detailed or sophisticated analysis, users should investigate the full “Soil Landscapes of Canada” product.

  • Categories  

    AAFC’s Canadian Ag-Land Monitoring System (CALMS), operational since 2009, was developed by AAFC’s Earth Observation Service (EOS) to deliver weekly NDVI-based maps of crop condition in near-real-time. The CALMS uses data collected by the Moderate Resolution Imaging Spectro-radiometer (MODIS), a sensor mounted onboard NASA’s Terra satellite that has been acquiring data since February 2000. The state-of-the-art radiometric, spectral and spatial resolutions of MODIS Terra make it particularly well-suited for large-scale vegetation mapping and assessment. Crop condition (NDVI) maps are generated weekly by AAFC throughout Canada’s growing season, the period defined as the six-month period stretching from the start of Julian week 12 (end of March) to the end of Julian week 44 (late October). Weeks of the year are defined according to the ISO 8601 week-numbering standard, where weeks start on a Monday and end the following Sunday. CALMS products are generated in the MODIS native Integrated Sinusoidal (ISIN) projection for the region covering the twelve MODIS tiles h09v03 to h14v03 and h09v04 to h14v04.

  • Categories  

    FCOVER corresponds to the amount of the ground surface that is covered by vegetation, including the understory, when viewed vertically (from nadir). FCOVER is an indicator of the spatial extent of vegetation independent of land cover class. It is a dimensionless quantity that varies from 0 to 1, and as an intrinsic property of the canopy, is not dependent on satellite observation conditions.This product consists of FCOVER indicator during peak-season (June-July-August) at 100m resolution covering Canada's land mass.

  • Categories  

    The Canadian long term satellite data record (LTDR) derived from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) data was produced by the Canada Center for Remote Sensing (CCRS). Processing included: geolocation, calibration, and compositing using Earth Observation Data Manager (Latifovic et al. 2005), cloud screening (Khlopenkov and Trishchenko, 2006), BRDF correction (Latifovic et. al., 2003), atmosphere and other corrections as described in Cihlar et. al. (2004). For temporal analysis of vegetation cross-sensor correction of Latifovic et al. (2012) is advised. Data collected by the AVHRR instrument on board the National Oceanic and Atmospheric Administration (NOAA) 9,11,14,16,17,18 and 19 satellites were used to generate Canada-wide 1-km 10-day AVHRR composites. Data are available starting in 1985. It is important to note that there are three types of AVHRR sensors: (i) AVHRR-1 flown onboard TIROS-N, NOAA-6, NOAA-8, and NOAA-10; (ii) AVHRR-2 flown onboard NOAA-7, NOAA-9, NOAA-11, NOAA-12, and NOAA-14; and (iii) AVHRR-3 currently operational onboard NOAA-15, NOAA-16, NOAA-17, NOAA-18 and NOAA-19. The AVHRR-1 has four channels, AVHRR-2 has five channels and the AVHRR-3 has six channels, although only five channels of AVHRR-3 can be operational at any one time. As such, channels 3A (1.6 m) and 3B (3.7 m) work interchangeably. The processing procedure was designed to minimize artefacts in AVHRR composite images. There are thirty six 10-day image composites per year. The following three processing levels are provided: P1) top of atmosphere reflectance and brightness temperature, P2) reflectance at surface and surface temperature and P3) reflectance at surface normalized to a common viewing geometry (BRDF normalization). The processing level P1 and P2 are provided for all 36 composites while level P3 is provided for 21 composites from April – October.

  • This is a Mosaic of Canada which is made from 121 images captured by Canadian satellite RADARSAT-2. These images were acquired from May 1, 2013 to June 1, 2013. The color variation represents the changes in soil texture, roughness and the level of soil moisture. (Credit: RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd. (2013) - All Rights Reserved. RADARSAT is an official mark of the Canadian Space Agency.)

  • Categories  

    Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors were used to generate the circa 2010 Mosaic of Canada at 30 m spatial resolution. All scenes were processed to Standard Terrain Correction Level 1T by the United States Geological Survey (USGS). Further processing performed by the Canada Centre for Remote Sensing included conversion of sensor measurements to top of atmosphere reflectance, cloud and cloud shadow detection, re-projection, selection of best measurements, mosaic generation ,noise removal and quality control. To provide a clear sky measurement for each location in Canada, data from the years 2009, 2010, and 2011 were used, but 2010 was preferentially selected. Bands 3 (0.63-0.69 µm), 4 (0.76-0.90 µm), 5 (1.55-1.75 µm), and 7 (2.08-2.35 µm) are provided in this version as significant atmosphere effects strongly limit the quality of the blue (0.45-0.52 µm) and green (0.52-0.60 µm) bands. Multi-criteria compositing was used for the selection of the most representative pixel. For ETM+ onboard Landsat 7 a scan line malfunction caused missing lines of data in all scenes collected after May 2003. Atmosphere and target variability between scenes cause these lines to have significant radiometric differences in some cases. A Fourier transformation approach was applied to correct this occurrence. This mosaic was developed for land cover and biophysical mapping applications across Canada. Other applications of these data are also possible, but should consider the temporal and spectral limitations of the product. Research to enhance the spatial, spectral and temporal aspects are in development for future versions of moderate resolution products from historical Landsat sensors, Landsat 8, and Sentinel 2 data.

  • Categories  

    The Canada Centre for Mapping and Earth Observation (CCMEO) has created a 30m resolution radar mosaic of Canada's landmass from the RADARSAT Constellation Mission (RCM). This product highlights different types of radar interaction with the surface, which can assist the interpretation and study of land cover on a national scale. The national mosaic is made up of 3222 RCM images acquired between August 2023 and February 2024. (Credit: RADARSAT Constellation Mission imagery © Government of Canada [2024]. RADARSAT is an official mark of the CSA.)