imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The Canadian long term satellite data record (LTDR) derived from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) data was produced by the Canada Center for Remote Sensing (CCRS). Processing included: geolocation, calibration, and compositing using Earth Observation Data Manager (Latifovic et al. 2005), cloud screening (Khlopenkov and Trishchenko, 2006), BRDF correction (Latifovic et. al., 2003), atmosphere and other corrections as described in Cihlar et. al. (2004). For temporal analysis of vegetation cross-sensor correction of Latifovic et al. (2012) is advised. Data collected by the AVHRR instrument on board the National Oceanic and Atmospheric Administration (NOAA) 9,11,14,16,17,18 and 19 satellites were used to generate Canada-wide 1-km 10-day AVHRR composites. Data are available starting in 1985. It is important to note that there are three types of AVHRR sensors: (i) AVHRR-1 flown onboard TIROS-N, NOAA-6, NOAA-8, and NOAA-10; (ii) AVHRR-2 flown onboard NOAA-7, NOAA-9, NOAA-11, NOAA-12, and NOAA-14; and (iii) AVHRR-3 currently operational onboard NOAA-15, NOAA-16, NOAA-17, NOAA-18 and NOAA-19. The AVHRR-1 has four channels, AVHRR-2 has five channels and the AVHRR-3 has six channels, although only five channels of AVHRR-3 can be operational at any one time. As such, channels 3A (1.6 m) and 3B (3.7 m) work interchangeably. The processing procedure was designed to minimize artefacts in AVHRR composite images. There are thirty six 10-day image composites per year. The following three processing levels are provided: P1) top of atmosphere reflectance and brightness temperature, P2) reflectance at surface and surface temperature and P3) reflectance at surface normalized to a common viewing geometry (BRDF normalization). The processing level P1 and P2 are provided for all 36 composites while level P3 is provided for 21 composites from April – October.
-
FCOVER corresponds to the amount of the ground surface that is covered by vegetation, including the understory, when viewed vertically (from nadir). FCOVER is an indicator of the spatial extent of vegetation independent of land cover class. It is a dimensionless quantity that varies from 0 to 1, and as an intrinsic property of the canopy, is not dependent on satellite observation conditions.This product consists of FCOVER indicator during peak-season (June-July-August) at 100m resolution covering Canada's land mass.
-
Landcover dataset created for the agricultural portion of Saskatchewan. Download: here A satellite imagery classification of Southern Saskatchewan based mainly on 1994 Landsat5 imagery. Developed by the Saskatchewan Research Council after 1997. Background: A group of Provincial and Federal Agencies formed a partnership in March of 1997 to share the cost of obtaining satellite imagery and interpreting this imagery to create a landcover dataset for the agricultural portion of Saskatchewan. The partnership included Saskatchewan Research Council (SRC), Saskatchewan Agriculture and Food (SAF), Saskatchewan Crop Insurance (SCI), Saskatchewan Property Management Corporation (SPMC), Environment Canada, the Prairie Farm Rehabilitation Administration (PFRA) and Saskatchewan Environment Resource Management (SERM). The University of Regina was also involved as an 'in kind' partner providing research services in the area of land cover classifications, accuracy assessment and data conversions. The Partnership Agreement required SRC (partner doing the bulk of data processing) to provide digital files for each of 328 1:50,000 NTS map sheets. The digital files included not only raw imagery, but also one file for each map sheet where the imagery was classified into 24 landcover types. The accuracy of this classification was to be demonstrated by SRC to be at least 90 per cent correct. In addition to the data processing done by SRC, SPMC provided the necessary positional control data (road intersection coordinates) and verified the positional accuracy of the final product. The other partners provided feedback to SRC on classification errors, which improved the overall accuracy of the final product. Classification Value No Data 0 Crop Land 1 Hay Crops (Forage) 2 Native Dominant Grass Lands 3 Tall Shrubs 4 Pasture (Seeded Grass Lands) 5 Hardwoods (Open Canopy) 6 Hardwoods (Closed Canopy) 7 Jack Pine (Closed Canopy) 8 Jack Pine (Open Canopy) 9 Spruce (Close Canopy) 10 Treed Rock 13 Recent Burns 14 Revegetating Burns 15 Cutovers 16 Water Bodies 17 Marsh 18 Herbaceous Fen 19 Mud/Sand/Saline 20 Shrub Fen (Treed Swamp) 21 Treed Bog 22 Open Bog 23 Slopes 25 Slopes 26 0. No Data 1. Crop Land - All lands dedicated to the production of annual cereal, oil seed and other specialty crops, and typically cultivated on an annual basis. 2. Hay Crops (Forage) - Alfalfa and alfalfa/tame grass mixtures. 3. Native Dominant Grass Lands - Native dominant grasslands/may contain tame grasses and herbs. 4. Tall Shrubs - Communities containing both low and tall shrub, snowberry, saskatoon, chokecherry, buffaloberry, and willow. 5. Pasture (Seeded Grass Lands) - Grassland dominated by tame grass species. 6. Hardwoods (Open Canopy) - Corresponds to Provincial Forest Inventory: over 75% hardwoods; 10-30% crown closure. 7. Hardwoods (Closed Canopy) - Corresponds to Provincial Forest Inventory: over 75% hardwoods; 30-100% crown closure. 8. Jack Pine (Closed Canopy) - Similar to Provincial Forest Inventory: 75% or greater Jack Pine; 30-100% crown closure. 9. Jack Pine (Open Canopy) - Similar to Provincial Forest Inventory: 75% or greater Jack Pine; 10-30% crown closure. 10. Spruce (Close Canopy) - Similar to Provincial Forest Inventory: 75% or greater Black and White Spruce; 10-30% crown closure. 11. Spruce: Open Canopy - Similar to Provincial Forest Inventory: 75% or greater Black and White Spruce; 10-30% crown closure. 12. Mixed Woods - All softwood/hardwood mixtures. 13. Treed Rock - Areas of exposed bedrock with generally less then 10% tree cover. Dominant species are Jack Pine and Black Spruce. 14. Recent Burns - All areas that have been recently burned over by wildfires. 15. Revegetating Burns - Burns with a regrowth of commercial timber generally 1-5 metres in height. 16. Cutovers - Areas where commercial timber has been completely or partially removed by logging operations. 17. Water Bodies - Consists of all open water - lakes, rivers, streams, ponds, and lagoons. 18. Marsh - Dominated by sedge and wetland grasses. 19. Herbaceous Fen - Fens dominated by herbaceous species. 20. Mud/Sand/Saline 21. Shrub Fen (Treed Swamp) - Fens dominated by shrubby species. 22. Treed Bog - Peat-covered or peat-filled depressions with a high water table and a surface carpet of moss, chiefly sphagnum. The bogs have 25% or more canopy by trees greater than one metre tall. The primary species is black spruce. 23. Open Bog - Peat-covered or peat-filled depressions with a high water table and a surface carpet of moss, chiefly sphagnum. 24. Farmstead - Farmstead types, towns, cities, Exposed areas with little or no vegetation or Cloud coverage. 25. Slopes - Steep Valley slopes or hill slopes where aspect and slope prohibit classification. 26. Slopes - Steep Valley slopes or hill slopes where aspect and slope prohibit classification.
-
This group of maps, which includes the CanMatrix and CanTopo collections, is now a legacy product that is no longer maintained. It may not meet current government standards. Natural Resources Canada's (NRCan) topographic raster maps provide a representation of the topographic phenomena of the Canadian landmass. Several editions of paper maps have been produced over time in order to offer improved products compared to their predecessors in terms of quality and the most up to date information possible. The georeferenced maps can be used in a Geographic Information System (GIS). In all cases, they accurately represent the topographical data available for the date indicated (validity date). The combination of CanMatrix and CanTopo data provides complete national coverage. • CanMatrix - Print Ready: Raster maps produced by scanning topographic maps at scales from 1:25 000 to 1:1 000 000. This product is not georeferenced. Validity dates: 1944 to 2005 (1980 on average). Available formats: PDF and TIFF • CanMatrix - Georeferenced: Raster maps produced by scanning topographic maps at scales of 1:50 000 and 1:250 000. These maps are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1944 to 2005 (1980 on average). Available format: GeoTIFF • CanTopo: Digital raster maps produced mainly from the GeoBase initiative, NRCan digital topographic data, and other sources. Approximately 2,234 datasets (maps) at scale of 1:50 000, primarily covering northern Canada, are available. CanTopo datasets in GeoPDF and GeoTIFF format are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1946 to 2012 (2007 on average). Available formats: PDF, GeoPDF, TIFF and GeoTIFF
-
Fraction of absorbed photosynthetically active radiation (fAPAR) quantified the absorbed by green foliage. fAPAR has been identified by the Global Climate Observing System as an essential climate variable required for ecosystem, weather and climate modelling and monitoring. This product consists of a national scale coverage (Canada) of monthly maps of fAPAR during a growing season (May-June-July-August-September) at 20m resolution. References: L. Brown, R. Fernandes, N. Djamai, C. Meier, N. Gobron, H. Morris, C. Canisius, G. Bai, C. Lerebourg, C. Lanconelli, M. Clerici, J. Dash. Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States IISPRS J. Photogramm. Remote Sens., 175 (2021), pp. 71-87, https://doi.org/10.1016/j.isprsjprs.2021.02.020. https://www.sciencedirect.com/science/article/pii/S0924271621000617 Richard Fernandes, Luke Brown, Francis Canisius, Jadu Dash, Liming He, Gang Hong, Lucy Huang, Nhu Quynh Le, Camryn MacDougall, Courtney Meier, Patrick Osei Darko, Hemit Shah, Lynsay Spafford, Lixin Sun, 2023. Validation of Simplified Level 2 Prototype Processor Sentinel-2 fraction of canopy cover, fraction of absorbed photosynthetically active radiation and leaf area index products over North American forests, Remote Sensing of Environment, Volume 293, https://doi.org/10.1016/j.rse.2023.113600. https://www.sciencedirect.com/science/article/pii/S0034425723001517
-
This publication contains vector data (shapefile) of the post-harvest forest residues in Canada for the bioenergy/bioproducts sector in oven-dry tonnes per year (ODT/yr) over the next 20 years. The maps were produced using different remote sensing products. We used forest attribute data at 250 m MODIS for the years 2001 and 2011 (Beaudoin et al. 2014 and 2018) combined with forest cover changes for the years 1985 to 2015 contained in the CanLaD dataset at 30 m Landsat(Guindon et al. 2017 and 2018). Results of available biomass (in the form of harvest residues) were reported at the 10 km x 10 km scale, while the map of mature forests in Canada was prepared at the forest management unit (FMU) level. Briefly, our methodology consisted of three steps: 1- create a map of mature forests for the year 2011, based on 2001-2010 average cut volumes within FMUs; 2- develop an annual cut rate from the area harvested within FMUs from 1985 to 2015 and; 3- define the amount of biomass in the form of forest residues available for the bioenergy sector. The biomass of branches and leaves of forest attribute data was used as a proxy to define the biomass of forest residues available. Nationally, the average biomass of forest residues available after harvest is 26 ± 16 ODT/ha, while the total annual availability for all managed forests in Canada was 21 million ODT/yr. A scientific article gives additional details on the methodology: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues across the Canadian managed forest. Can. J. For. Res. 48: http://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0080 Reference for this dataset: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Maps forecasting the availability of logging residues in Canada. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/5072c495-240c-42a3-ad55-c942ab37c32a
-
The MODIS surface albedo dataset was produced by the Canada Center for Remote Sensing (CCRS), Natural Resources Canada. The dataset represents the solar shortwave broadband surface albedo and it is at a 10-day interval covering the entire Canadian landmass as well as northern USA, Alaska, and the Greenland. The dataset was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA satellite which provides a global coverage every 1-2 days in 36 spectral bands ranging from visible to infrared and to thermal wavelengths between 405 and 14,385 nm, and was available since 2000. For the estimation of surface albedo, the first seven spectral bands of B1 to B7 ranging from 459 nm to 2155 nm were used. B1 and B2 have a 250 meter resolution and B3 to B7 have a 500 meter resolution. A downscaling method using a regression and normalization scheme was employed to downscale the bands B3 to B7 to 250 meter resolution while preserving radiometric properties of the original data. To obtain clear-sky observations from MODIS, composite images for a 10 day period were generated by using a series of advanced algorithms (Luo et al., 2008). The 10-day composites of B1-B7 reflectance were then used to retrieve spatially continuous spectral albedo by using a combined land/snow BRDF (Bi-directional Reflectance Distribution Function) model. In that method, the modified RossThick-LiSparse BRDF model (Maignan et al., 2004) for land and Kokhanovsky and Zege’s model (2004) for snow are linearly combined for mixed surface conditions. They are weighted by snow fraction (0.0 ~ 1.0). The seven spectral albedo were then converted into the shortwave broadband surface albedo using the empirical MODIS polynomial conversion equation of Liang et al. (1999). The data product is in LCC (Lambert Conformal Conic) projection with a 250m pixel resolution. There are 36 albedo images per year. A dataset representing the pixel state (e.g. cloud/shadow, snow/ice, water, land, et al.) was also generated for each 10-day corresponding to the surface albedo product. References: Kokhanovsky, A. A. and Zege, E. P., 2004, Scattering Optics of Snow, Applied Optics, 43, 1589-1602, doi:10.1364/AO.43.001589, 20. Liang, S., Strahler, A.H., Walthall, C., 1999. Retrieval of land surface albedo from satellite observations: a simulation study. J. Appl. Meteorol. 38, 712–725. Luo, Y., Trishchenko, A.P., Khlopenkov, K.V., 2008. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 112, 4167–4185. Maignan, F., F.M. Bréon and R. Lacaze, 2004, Bidirectional reflectance of Earth targets : evaluation of analytical models using a large set of spaceborne measurements with emphasis with the hot spot, Remote Sens. Environ., 90, 210-220.
-
Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.
-
The third generation of high resolution 10-m wetland inventory map of Canada, covering an approximate area of one billion hectares, was generated using multi-year (2016-2020), multi-source imagery (Sentinel-1, Sentinel-2, ALOS PALSAR-2, and SRTM) Earth Observation (EO) data as well as environmental features. Over 8800 wetland polygons were processed within an object-based random forest classification scheme on the Google Earth Engine cloud computing platform. The average overall accuracy of 90.5% is an increase of 4.7% over CWIM2. CWIM Versions: The Canadian Wetland Inventory Map (CWIM) is an extension of work started at Memorial University to produce a Newfoundland and Labrador wetland inventory during 2015-2018 which was significantly funded by Environment and Climate Change Canada. The first national CWIM was produced 2018-2019 as a collaboration between Memorial University, C-CORE, and Natural Resources Canada. Dr. Brian Brisco was instrumental in connecting ground truth from multiple sources to the project and providing guidance. Version 2 was produced in 2020 which included more training data and processing by Canada’s ecozones rather than provinces to take advantage of the commonality of landscape ecological features within ecozones to improve the accuracy. Version 3 produced in 2021 continued adding more data sources to further improve accuracy specifically an overestimation of wetland area as well as introducing a confidence map. Version 3A completed in 2022 updates only the arctic ecozones due to their relatively lower accuracy and added hydro-physiographic data layers. Currently work is underway to create a northern circumpolar wetland inventory map to be published in 2025. Paper on Newfoundland and Labrador Wetland Inventory: Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. https://doi.org/10.3390/rs11010043 Paper on CWIM1: Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., … Bourgeau-Chavez, L. (2020). Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing, 46(1), 15–33. https://doi.org/10.1080/07038992.2019.1711366 Paper on CWIM2: Mahdianpari, M., Brisco, B., Granger, J. E., Mohammadimanesh, F., Salehi, B., Banks, S., … Weng, Q. (2020). The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth Engine. Canadian Journal of Remote Sensing, 46(3), 360–375. https://doi.org/10.1080/07038992.2020.1802584 Paper on CWIM3: M. Mahdianpari et al., "The Third Generation of Pan-Canadian Wetland Map at 10 m Resolution Using Multisource Earth Observation Data on Cloud Computing Platform," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 8789-8803, 2021, doi: 10.1109/JSTARS.2021.3105645. Paper on Arctic ecoregion enhancement for CWIM3A: Michael Merchant, et al., ”Leveraging google earth engine cloud computing for large-scale arctic wetland mapping,” in International Journal of Applied Earth Observation and Geoinformation, vol. 125, 2023, https://doi.org/10.1016/j.jag.2023.103589.
-
This collection is a legacy product that is no longer supported. It may not meet current Government standards. The National Topographic Data Base (NTDB) comprises digital vector data sets that cover the entire Canadian landmass. The NTDB includes features such as watercourses, urban areas, railways, roads, vegetation, and relief. The organizational unit for the NTDB is the National Topographic System (NTS), based on the North American Datum of 1983 (NAD83). Each file (data set) consists of one NTS unit at either the 1:50,000 or 1:250,000 scale. Related Products: [NTDB Correction Matrices, 2003-2009](https://ouvert.canada.ca/data/en/dataset/b6d0c19c-27e3-4392-b21f-49b1eec95653)
Arctic SDI catalogue