imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The “Soils of Canada, Derived” national scale thematic datasets display the distribution and areal extent of soil attributes such as drainage, texture of parent material, kind of material, and classification of soils in terms of provincial Detailed Soil Surveys (DDS) polygons, Soil Landscape Polygons (SLCs), Soil Order and Great Group. The relief and associated slopes of the Canadian landscape are depicted on the local surface form thematic dataset. The purpose of the “Soils of Canada, Derived” series is to facilitate the cartographic display and basic queries of the Soil Landscapes of Canada at a national scale. For more detailed or sophisticated analysis, users should investigate the full “Soil Landscapes of Canada” product.
-
The Canada Centre for Mapping and Earth Observation (CCMEO) has created a 30m resolution radar mosaic of Canada's landmass from the RADARSAT Constellation Mission (RCM). This product highlights different types of radar interaction with the surface, which can assist the interpretation and study of land cover on a national scale. The national mosaic is made up of 3222 RCM images acquired between August 2023 and February 2024. (Credit: RADARSAT Constellation Mission imagery © Government of Canada [2024]. RADARSAT is an official mark of the CSA.)
-
AAFC’s Canadian Ag-Land Monitoring System (CALMS), operational since 2009, was developed by AAFC’s Earth Observation Service (EOS) to deliver weekly NDVI-based maps of crop condition in near-real-time. The CALMS uses data collected by the Moderate Resolution Imaging Spectro-radiometer (MODIS), a sensor mounted onboard NASA’s Terra satellite that has been acquiring data since February 2000. The state-of-the-art radiometric, spectral and spatial resolutions of MODIS Terra make it particularly well-suited for large-scale vegetation mapping and assessment. Crop condition (NDVI) maps are generated weekly by AAFC throughout Canada’s growing season, the period defined as the six-month period stretching from the start of Julian week 12 (end of March) to the end of Julian week 44 (late October). Weeks of the year are defined according to the ISO 8601 week-numbering standard, where weeks start on a Monday and end the following Sunday. CALMS products are generated in the MODIS native Integrated Sinusoidal (ISIN) projection for the region covering the twelve MODIS tiles h09v03 to h14v03 and h09v04 to h14v04.
-
This group of maps, which includes the CanMatrix and CanTopo collections, is now a legacy product that is no longer maintained. It may not meet current government standards. Natural Resources Canada's (NRCan) topographic raster maps provide a representation of the topographic phenomena of the Canadian landmass. Several editions of paper maps have been produced over time in order to offer improved products compared to their predecessors in terms of quality and the most up to date information possible. The georeferenced maps can be used in a Geographic Information System (GIS). In all cases, they accurately represent the topographical data available for the date indicated (validity date). The combination of CanMatrix and CanTopo data provides complete national coverage. • CanMatrix - Print Ready: Raster maps produced by scanning topographic maps at scales from 1:25 000 to 1:1 000 000. This product is not georeferenced. Validity dates: 1944 to 2005 (1980 on average). Available formats: PDF and TIFF • CanMatrix - Georeferenced: Raster maps produced by scanning topographic maps at scales of 1:50 000 and 1:250 000. These maps are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1944 to 2005 (1980 on average). Available format: GeoTIFF • CanTopo: Digital raster maps produced mainly from the GeoBase initiative, NRCan digital topographic data, and other sources. Approximately 2,234 datasets (maps) at scale of 1:50 000, primarily covering northern Canada, are available. CanTopo datasets in GeoPDF and GeoTIFF format are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1946 to 2012 (2007 on average). Available formats: PDF, GeoPDF, TIFF and GeoTIFF
-
This publication contains a raster maps at 250 m resolution of the merchantable volume (m3/ha) of the mature Canadian forest available for harvesting in the next 20 years (2011 to 2031). The maps were produced from remote sensing products at a spatial resolution of 250 m on the MODIS pixel grid and 30 m on the Landsat pixel grid. More specifically, we used forest attribute data at the 250 m pixel for the years 2001 and 2011 (Beaudoin et al 2014 and 2018) combined with forest cover changes for the years 1985 to 2015 at 30 m (Guindon et al. 2017 and 2018). The map of mature forests in Canada was prepared at the forest management unit (FMU) level and therefore exclude private lands. To be considered mature (i.e. available for cutting in the next 20 years), the forest pixels of Beaudoin et al. (2018) was to have a merchantable volume per ha equal to or greater than 80% of the average merchantable volume of the pixels that were harvested between 2001 and 2011 per forest management unit. A scientific article gives additional details on the methodology: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Can. J. For. Res. 48: http://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0080 Reference for this dataset: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/dd94871a-9a20-47f5-825b-768518140f35
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions vary from 150 cm to 200 cm. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
Data represents surface water occurrence frequency (percentage), which describes the frequency for each grid appeared as water in the 30 years time period of 1991 to 2020. The data covers Canada’s entire landmass including all transboundary watersheds, and is at 30-meter spatial resolution. The surface water occurrence frequency is derived using the surface water model of Wang et al. (2023) from all-available monthly water data observed by the Landsat satellites (Pekel et al., 2016). Here, permanent waters are represented by 100%, and permanent land surfaces by 0%, of water occurrence for a 30-meter by 30-meter grid. References: Pekel, J.-F., A. Cottam, N. Gorelick, A.S. Belward, 2016, High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422. Wang, S., J. Li, and H. A. J. Russell, 2023, Methods for Estimating Surface Water Storage Changes and Their Evaluations. Journal of Hydrometeorology, DOI: https://doi.org/10.1175/JHM-D-22-0098.1.
-
Organic soils in the boreal forest commonly store as much carbon as the vegetation above ground. While recent efforts through the National Forest Inventory has yielded new spatial datasets of forest structure across the vast area of Canada’s boreal forest, organic soils are poorly mapped. In this geospatial dataset, we produce a map primarily of forested and treed peatlands, those with more than 40 cm of peat accumulation and over 10% tree canopy cover. National Forest Inventory ground plots were used to identify the range of forest structure that corresponds to the presence of over 40 cm of peat soils. Areas containing that range of forest cover were identified using the National Forest Inventory k-NN forest structure maps and assigned a probability (0-100% as integer) of being a forested or treed peatland according to a statistical model. While this mapping product captures the distribution of forested and treed peatlands at a 250 m resolution, open, completely treeless peatlands are not fully captured by this mapping product as forest cover information was used to create the maps. The methodology used in the creation of this product is described in: Thompson DK, Simpson BN, Beaudoin A. 2016. Using forest structure to predict the distribution of treed boreal peatlands in Canada. Forest Ecology and Management, 372, 19-27. https://cfs.nrcan.gc.ca/publications?id=36751 This distribution uses an updated forest attribute layer current to 2011 from: Beaudoin A, Bernier PY, Villemaire P, Guindon L, Guo XJ. 2017. Species composition, forest properties and land cover types across Canada’s forests at 250m resolution for 2001 and 2011. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 Additionally, this distribution varies slightly from the original published in 2016 in that here slope data is derived from the CDEM: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 The above peatland probability map was further processed to delineate bogs vs fens (based on mapped Larix content via the k-NN maps), as well as an approximation of the extent of open peatlands using EOSD data. The result is a 9-type peatland map with a more complete methodology as detailed in: Webster, K. L., Bhatti, J. S., Thompson, D. K., Nelson, S. A., Shaw, C. H., Bona, K. A., Hayne, S. L., & Kurz, W. A. (2018). Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance and Management, 13(1), 16. https://doi.org/10.1186/s13021-018-0105-5 In plain text, the legend for the 9-class map is as follows: value="0" label="not peat" alpha="0" value="1" label="Open Bog" alpha="255" color="#0a4b32" value="2" label="Open Poor Fen" alpha="255" color="#5c5430" value="3" label="Open Rich Fen" alpha="255" color="#792652" value="4" label="Treed Bog" alpha="255" color="#6a917b" value="5" label="Treed Poor Fen" alpha="255" color="#aba476" value="6" label="Treed Rich Fen" alpha="255" color="#af7a8f" value="7" label="Forested Bog" alpha="255" color="#aad7bf" value="8" label="Forested Poor Fen" alpha="255" color="#fbfabc" value="9" label="Forested Rich Fen" alpha="255" color="#ffb6db" This colour scale is given in qml/xml format in the resources below. The 9-type peatland map from Webster et al 2018 was further refined slightly following two simple conditions: (1) any 250-m raster cell with greater than 40% pine content is classified as upland (non-peat); (2) all 250-m raster cells classified as water or agriculture via the NRCan North American Land Cover Monitoring System (https://doi.org/10.3390/rs9111098) is also classified as non-peatland (value of zero in the 9-class map. This mapping scheme was used at a regional scale in the following paper: Thompson, D. K., Simpson, B. N., Whitman, E., Barber, Q. E., & Parisien, M.-A. (2019). Peatland Hydrological Dynamics as A Driver of Landscape Connectivity and Fire Activity in the Boreal Plain of Canada. Forests, 10(7), 534. https://doi.org/10.3390/f10070534 And is reproduced here at a national scale. Note that this mapping product does not fully capture all permafrost peatland features covered by open canopy spruce woodland with lichen ground cover. Nor are treeless peatlands near the northern treeline captured in the training data, resulting in unknown mapping quality in those regions.
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions vary from 10 cm to 50 cm. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
The Saskatchewan Digital Land Cover was created to be used in the interim. The National Land Cover Project plans to integrate land cover information compiled by Natural Resources Canada, Canadian Forest Service, and Agriculture and Agri-Food Canada. The Saskatchewan Digital Land Cover raster provides a seamless provincial coverage of the province and was created by combining the Saskatchewan Research Council's Northern Digital Land Cover (NDLC) with the Southern Digital Land Cover (SDLC). With exception to the SDLC's value 2 (i.e. Hay Crops) and value 3 (i.e. Native Dominant Grass Lands), the NDLC takes precedence over the SDLC in areas that the two rasters overlap because the NDLC is more current than the dated SDLC. The SDLC's values 2 and 3 were preserved because these land covers are not specifically represented in the NDLC. For the purpose of this dataset, some of the SDLC and NDLC values were reclassified to new values to reconcile varying definitions. It should also be noted that because the NDLC's 30 x 30 metre pixels do not align with the SDLC's 30 x 30 metre pixels, this raster was snapped to the NDLC. Last, as is with the SDLC and the NDLC, the extent of this raster does not extend all of the way to the Saskatchewan boundary, specifically, the Information Services Corporation's SaskGIS Provincial Boundary dataset, in numerous areas along the west, south and southeast borders: There are gaps of up to 500 m wide of "no data" between the provincial boundary and the raster along these areas of the Saskatchewan boundary. Classification Value AGRICULTURE 1 HAY CROPS 2 NATIVE DOMINANT GRASSLANDS 3 TALL SHRUBS 4 PASTURE 5 HARDWOODS (OPEN CANOPY) 6 HARDWOODS (CLOSED CANOPY) 7 JACKPINE (CLOSED CANOPY) 8 JACKPINE (OPEN CANOPY) 9 SPRUCE (CLOSED CANOPY) 10 SPRUCE (OPEN CANOPY) 11 MIXED WOODS 12 TREED ROCK 13 RECENT BURNS 14 REVEGETATING/REGENERATION BURN 15 CUTOVERS 16 WATER 17 MARSH 18 HERBACEOUS FEN 19 MUD/SAND/SALINE 20 SHRUB FEN (TREED SWAMP) 21 TREED BOG 22 OPEN BOG 23 FARMSTEAD 24 UNCLASSIFIED 25 BARREN LAND 26 MIXED SOFTWOODS (OPEN & CLOSED) 27 PASTURE UPLAND HERBACEOUS GRAMINOID 30 1. AGRICULTURE - Cropland, including all lands dedicated to the production of annual cereal, oil seed, and other specialty crops, and typically cultivated on an annual basis; and agricultural clearing areas. 2. HAY CROPS (Forage) - Alfalfa and alfalfa/tame grass mixtures. 3. NATIVE DOMINANT GRASSLANDS - Native dominant grasslands. (May contain tame grasses and herbs.) 4. TALL SHRUBS - Communities containing both low and tall shrub, snowberry, saskatoon, chokecherry, buffaloberry, and willow. 5. PASTURE (Seeded Grass Lands) - Grassland dominated by tame grass species. 6. HARDWOODS (I.E. OPEN CANOPY) - Greater than 75% hardwoods by area, including trembling aspen, white birch, balsam poplar; 10 - 55% crown closure. 7. HARDWOODS (I.E. CLOSED CANOPY) - Greater than 75% hardwoods by area, including trembling aspen, white birch, balsam poplar; Greater than 55% crown closure. 8. JACKPINE (I.E. CLOSED CANOPY) - Greater than 75% of Jack Pine by area; Greater than 55% crown closure. 9. JACKPINE (I.E. OPEN CANOPY) - Greater than 75% of Jack Pine by area; 10 - 55% crown closure. 10. SPRUCE (I.E. CLOSED CANOPY) - Greater than 75% or greater Black and White Spruce; Greater than 55% crown closure. 11. SPRUCE (I.E. OPEN CANOPY) - Greater than 75% Black and White Spruce; 10-55% crown closure. 12. MIXED WOODS - All softwood/hardwood mixtures; open and closed canopy (i.e. An area of hardwood and softwood combinations in which neither hardwood nor softwood account for greater than 75% of species by area, and where the crown closure is greater than 10%). 13. TREED ROCK - Areas of exposed bedrock with generally less then 10% tree cover. 14. RECENT BURNS - An area showing evidence of recent burning natural or prescribed and there is little to no regeneration or revegetation visible. 15. REVEGETATING/REGENERATION BURN - An area showing evidence of natural or prescribed burning and where regeneration or revegetation is visible. 16. CUTOVERS - An area of deforestation, vegetated and non-vegetated. 17. WATER - These areas include lakes, rivers, streams and reservoirs 18. MARSH - A periodically wet or continually flooded but non peat-forming area supporting grasses, sedges, and reeds. 19. HERBACEOUS FEN - A wetland area consisting of decomposing peat supporting vascular and nonvascular plants (i.e. grasses, sedges, reeds). 20. MUD/SAND/SALINE - Water saturated soil, sand containing no vegetation, and salt water. 21. SHRUB FEN (I.E. TREED SWAMP) - A wetland area consisting of decomposing peat supporting low shrubs, forbs, grass, moss, and a sparse tree cover. 22. TREED BOG - A wetland area consisting of decomposing peat moss, lichen, and shrubs, with 10% or more canopy by trees (i.e. primarily black spruce and tamarack). 23. OPEN BOG - A wetland area consisting of decomposing peat moss, lichen, and sparse tree cover. 24. FARMSTEAD - Farmsteads, towns, cities, exposed areas with little or no vegetation. 25. UNCLASSIFIED 26. BARREN LAND - Any area of exposed rock, soil, or non-vegetated land. 27. MIXED SOFTWOODS (OPEN & CLOSED) - Jack Pine/Spruce, Spruce/Jack Pine Open and Closed, an area of softwood combinations in which neither Jack Pine or Spruce account for greater than 75% of species by area, and where crown closure is greater than 10%. 30. PASTURE UPLAND HERBACEOUS GRAMINOID - Lands containing known pastures, tame or native grasses, and herbaceous vegetation. These lands may contain low-lying shrubs with less then 10% tree cover.