Topic
 

imageryBaseMapsEarthCover

460 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 460
  • Categories  

    This collection is a legacy product that is no longer supported. It may not meet current Government standards. The National Topographic Data Base (NTDB) comprises digital vector data sets that cover the entire Canadian landmass. The NTDB includes features such as watercourses, urban areas, railways, roads, vegetation, and relief. The organizational unit for the NTDB is the National Topographic System (NTS), based on the North American Datum of 1983 (NAD83). Each file (data set) consists of one NTS unit at either the 1:50,000 or 1:250,000 scale. Related Products: [NTDB Correction Matrices, 2003-2009](https://ouvert.canada.ca/data/en/dataset/b6d0c19c-27e3-4392-b21f-49b1eec95653)

  • Categories  

    Each pixel value corresponds to the best quality maximum NDVI recorded within that pixel over the week specified. Poor quality pixel observations are removed from this product. Observations whose quality is degraded by snow cover, shadow, cloud, aerosols, and/or low sensor zenith angles are removed (and are assigned a value of “missing data”). In addition, negative Max-NDVI values, occurring where R reflectance > NIR reflectance, are considered non-vegetated and assigned a value of 0. This results in a Max-NDVI product that should (mostly) contain vegetation-covered pixels. Max-NDVI values are considered high quality and span a biomass gradient ranging from 0 (no/low biomass) to 1 (high biomass).

  • Categories  

    The RADARSAT Constellation is the evolution of the RADARSAT Program with the objective of ensuring data continuity, improved operational use of Synthetic Aperture Radar (SAR) and improved system reliability. The three-satellite configuration provides daily revisits of Canada's vast territory and maritime approaches, as well as daily access to 90% of the world's surface. RCM is tasked solely by the Government of Canada, to acquire data, first and foremost in support of Government of Canada services and needs. RCM data and services contributes to ensuring the safety and security of Canadians; monitoring and protecting the environment; monitoring of climate change; managing Canada’s natural resources; and stimulating innovation, research and economic development. In addition to these core user areas, there are expected to be a wide range of ad hoc uses of RADARSAT Constellation data in many different applications within the public and private sectors, both in Canada and internationally. The current data set reflects the acquisition plans that are designed to meet the RCM SAR imaging demands of the Government of Canada. These are being made available publicly in advance of the acquisitions. To meet the data needs of the Government of Canada, acquisitions may be changed without notice. After their acquisition and processing, the RCM image products listed in the current data set, will be delivered to the Earth Observation Data Management System - EODMS (https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html) portal of Natural Resources Canada. Users can register to the EODMS portal as public users to retrieve the RCM image products. For those requiring a greater access to RCM imagery consisting of product types or spatial resolutions not available to public users: you may apply to upgrade your public account to an ‘RCM external vetted entity’ EODMS user type account. For more information on this process, please contact the Canadian Space Agency using the information available at the following link : https://www.asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/how-to-become-a-user.asp Publication frequency : I. Future acquisition plans are published every two weeks for a two-week window that starts two weeks from the publication date. As an example, acquisition plan published on April 1st covers acquisitions from April 14 to 27. The next plan is published on April 14th and covers from April 28 to May 11. II. Past acquisitions plans are published monthly and covers a period of one month from the first to the last day As an example, acquisition plan published on April 1st covers acquisition made between the March 1 and March 31. The next plan covers the month of April.

  • Categories  

    The dataset includes two data products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) imager operated by the US National Oceanic and Atmospheric Administration (NOAA) onboard Suomi National Polar-Orbiting Partnership (SNPP) satellite: 1) Normalized Difference Vegetation Index (NDVI) 2) Snow Mask (Snow) with supplementary information about data quality and scene identification Each product, NDVI and Snow, has been derived at two spatial resolutions: 1) I-band resolution for 250-m spatial grid (VIIRS image bands I1 and I2) 2) M-band resolution for 500-m spatial grid (VIIRS moderate resolution bands M5 and M7) Datasets are produced with a daily temporal frequency, i.e. one file per day. The study area with the size of 5,700 km × 4,800 km covers Canada and neighboring regions (Trishchenko, 2019). The VIIRS time series are produced from VIIRS /SNPP imagery at CCRS from January 1, 2017.

  • Categories  

    Topographic maps produced by Natural Resources Canada conform to the National Topographic System (NTS) of Canada. Indexes are available in three standard scales: 1:1,000,000, 1:250,000 and 1:50,000. The area covered by a given mapsheet is determined by its latitude and longitude. 1:1,000,000 mapsheets are identified by a combination of three numbers (e.g. 098). 1:250,000 mapsheets are identified by a combination of numbers, and letters ranging from A through P (e.g. 098C). Sixteen smaller segments (1 to 16) form blocks used for 1:50,000 mapping (e.g. 098C03).

  • Categories  

    The MODIS Surface Albedo and Surface Reflectance Dataset (or simply Albedo) includes times series of 10-day composite products derived at 250-m spatial resolution over Canadian territory and neighboring areas produced at the Canada Centre for Remote Sensing (CCRS) since February 2000.The datasets contain spectral and broadband reflectance’s and albedo for MODIS bands B1-B7 designed primarily for land applications. The imagery for all spectral bands was downscaled and re-projected into the Lambert Conformal Conic (LCC) projection at 250-m spatial resolution. The area size is 5,700 km × 4,800 km. The specialized MODIS processing system was developed at CCRS to fully utilize the high quality of MODIS L2 swath imagery over the northern latitudes. As such, the CCRS Albedo product is different from the standard NASA product. The differences are related to temporal and spatial scaling, shape of kernel functions employed to fit data, as well as details of scene identification, atmospheric correction, and data fitting methodology.

  • Categories  

    The 2005 AAFC Land Use is a culmination and curated metaanalysis of several high-quality spatial datasets produced between 1990 and 2021 using a variety of methods by teams of researchers as techniques and capabilities have evolved. The information from the input datasets was consolidated and embedded within each 30m x 30m pixel to create consolidated pixel histories, resulting in thousands of unique combinations of evidence ready for careful consideration. Informed by many sources of high-quality evidence and visual observation of imagery in Google Earth, we apply an incremental strategy to develop a coherent best current understanding of what has happened in each pixel through the time series.

  • Categories  

    This data publication contains two collections of raster maps of forest attributes across Canada, the first collection for year 2001, and the second for year 2011. The 2001 collection is actually an improved version of an earlier set of maps produced also for year 2001 (Beaudoin et al 2014, DOI: https://doi.org/10.1139/cjfr-2013-0401) that is itself available through the web site “http://nfi-nfis.org”. Each collection contains 93 maps of forest attributes: four land cover classes, 11 continuous stand-level structure variables such as age, volume, biomass and height, and 78 continuous values of percent composition for tree species or genus. The mapping was done at a spatial resolution of 250m along the MODIS grid. Briefly the method uses forest polygon information from the first version of photoplots database from Canada’s National Forest Inventory as reference data, and the non-parametric k-nearest neighbors procedure (kNN) to create the raster maps of forest attributes. The approach uses a set of 20 predictive variables that include MODIS spectral reflectance data, as well as topographic and climate data. Estimates are carried out on target pixels across all Canada treed landmass that are stratified as either forest or non-forest with 25% forest cover used as a threshold. Forest cover information was extracted from the global forest cover product of Hansen et al (2013) (DOI: https://doi.org/10.1126/science.1244693). The mapping methodology and resultant datasets were intended to address the discontinuities across provincial borders created by their large differences in forest inventory standards. Analysis of residuals has failed to reveal residual discontinuities across provincial boundaries in the current raster dataset, meaning that our goal of providing discontinuity-free maps has been reached. The dataset was developed specifically to address strategic issues related to phenomena that span multiple provinces such as fire risk, insect spread and drought. In addition, the use of the kNN approach results in the maintenance of a realistic covariance structure among the different variable maps, an important property when the data are extracted to be used in models of ecosystem processes. For example, within each pixel, the composition values of all tree species add to 100%. * Details on the product development and validation can be found in the following publication: Beaudoin, A., Bernier, P.Y., Villemaire, P., Guindon, L., Guo, X.-J. 2017. Tracking forest attributes across Canada between 2001 and 2011 using a kNN mapping approach applied to MODIS imagery, Canadian Journal of Forest Research 48: 85–93. DOI: https://doi.org/10.1139/cjfr-2017-0184 * Please cite this dataset as: Beaudoin A, Bernier PY, Villemaire P, Guindon L, Guo XJ. 2017. Species composition, forest properties and land cover types across Canada’s forests at 250m resolution for 2001 and 2011. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 * This dataset contains these NFI forest attributes: ## LAND COVER : landbase vegetated, landbase non-vegetated, landcover treed, landcover non-treed ## TREE STRUCTURE : total above ground biomass, tree branches biomass, tree foliage biomass, stem bark biomass, stem wood biomass, total dead trees biomass, stand age, crown closure, tree stand heigth, merchantable volume, total volume ## TREE SPECIES : abies amabilis (amabilis fir), abies balsamea (balsam fir), abies lasiocarpa (subalpine fir), abies spp. (unidentified fir), acer macrophyllum (bigleaf maple), acer negundo (manitoba maple, box-elder), acer pensylvanicum (striped maple), acer rubrum (red maple), acer saccharinum (silver maple), acer saccharum (sugar maple), acer spicatum (mountain maple), acer spp. (unidentified maple), alnus rubra (red alder), alnus spp. (unidentified alder), arbutus menziesii (arbutus), betula alleghaniensis (yellow birch), betula papyrifera (white birch), betula populifolia (gray birch), betula spp. (unidentified birch), carpinus caroliniana (blue-beech), carya cordiformis (bitternut hickory), chamaecyparis nootkatensis (yellow-cedar), fagus grandifolia (american beech), fraxinus americana (white ash), fraxinus nigra (black ash), fraxinus pennsylvanica (red ash), juglans cinerea (butternut), juglans nigra (black walnut), juniperus virginiana (eastern redcedar), larix laricina (tamarack), larix lyallii (subalpine larch), larix occidentalis (western larch), larix spp. (unidentified larch), malus spp. (unidentified apple), ostrya virginiana (ironwood, hop-hornbeam), picea abies (norway spruce), picea engelmannii (engelmann spruce), picea glauca (white spruce), picea mariana (black spruce), picea rubens (red spruce), picea sitchensis (sitka spruce), picea spp. (unidentified spruce), pinus albicaulis (whitebark pine), pinus banksiana (jack pine), pinus contorta (lodgepole pine), pinus monticola (western white pine), pinus ponderosa (ponderosa pine), pinus resinosa (red pine), pinus spp. (unidentified pine), pinus strobus (eastern white pine), pinus sylvestris (scots pine), populus balsamifera (balsam poplar), populus grandidentata (largetooth aspen), populus spp. (unidentified poplar), populus tremuloides (trembling aspen), populus trichocarpa (black cottonwood), prunus pensylvanica (pin cherry), prunus serotina (black cherry), pseudotsuga menziesii (douglas-fir), quercus alba (white oak), quercus macrocarpa (bur oak), quercus rubra (red oak), quercus spp. (unidentified oak), salix spp. (unidentified willow), sorbus americana (american mountain-ash), thuja occidentalis (eastern white-cedar), thuja plicata (western redcedar), tilia americana (basswood), tsuga canadensis (eastern hemlock), tsuga heterophylla (western hemlock), tsuga mertensiana (mountain hemlock), tsuga spp. (unidentified hemlock), ulmus americana (white elm), unidentified needleaf, unidentified broadleaf, broadleaf species, needleaf species, unknown species

  • Categories  

    This collection is a legacy product that is no longer supported. It may not meet current government standards. Land Cover information is the result of vectorization of raster thematic data originating from classified Landsat 5 and Landsat 7 ortho-images, for agricultural and forest areas of Canada, and for Northern Territories. The forest cover was produced by the Earth Observation for Sustainable Development (EOSD) project, an initiative of the Canadian Forest Service (CFS) with the collaboration of the Canadian Space Agency (CSA) and in partnership with the provincial and territorial governments. The agricultural coverage is produced by the National Land and Water Information Service (NLWIS) of Agriculture and Agri-Food Canada (AAFC). Northern Territories land cover was realized by the Canadian Centre of Remote Sensing (CCRS). Land Cover data are classified according to a harmonized legend build from the partner's legends. This legend is principally based on the legend described in following publication: EOSD publication: EOSD Land Cover Classification Legend Report, on which CFS and AAFC collaborated. Some classes related to Northern environments where added in order to meet the interpretation of the Northern land cover classification experts. Initially, Land Cover vector data are closest as possible to the source (original raster data). Slight differences can occur because the raster data goes through a data portrayal before being vectorized in order to enhance visual representation such as minimum size, smoothness of polygons and geometry.

  • Categories  

    Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions vary from 150 cm to 200 cm. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html