imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The Canadian long term satellite data record (LTDR) derived from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) data was produced by the Canada Center for Remote Sensing (CCRS). Processing included: geolocation, calibration, and compositing using Earth Observation Data Manager (Latifovic et al. 2005), cloud screening (Khlopenkov and Trishchenko, 2006), BRDF correction (Latifovic et. al., 2003), atmosphere and other corrections as described in Cihlar et. al. (2004). For temporal analysis of vegetation cross-sensor correction of Latifovic et al. (2012) is advised. Data collected by the AVHRR instrument on board the National Oceanic and Atmospheric Administration (NOAA) 9,11,14,16,17,18 and 19 satellites were used to generate Canada-wide 1-km 10-day AVHRR composites. Data are available starting in 1985. It is important to note that there are three types of AVHRR sensors: (i) AVHRR-1 flown onboard TIROS-N, NOAA-6, NOAA-8, and NOAA-10; (ii) AVHRR-2 flown onboard NOAA-7, NOAA-9, NOAA-11, NOAA-12, and NOAA-14; and (iii) AVHRR-3 currently operational onboard NOAA-15, NOAA-16, NOAA-17, NOAA-18 and NOAA-19. The AVHRR-1 has four channels, AVHRR-2 has five channels and the AVHRR-3 has six channels, although only five channels of AVHRR-3 can be operational at any one time. As such, channels 3A (1.6 m) and 3B (3.7 m) work interchangeably. The processing procedure was designed to minimize artefacts in AVHRR composite images. There are thirty six 10-day image composites per year. The following three processing levels are provided: P1) top of atmosphere reflectance and brightness temperature, P2) reflectance at surface and surface temperature and P3) reflectance at surface normalized to a common viewing geometry (BRDF normalization). The processing level P1 and P2 are provided for all 36 composites while level P3 is provided for 21 composites from April – October.
-
This group of maps, which includes the CanMatrix and CanTopo collections, is now a legacy product that is no longer maintained. It may not meet current government standards. Natural Resources Canada's (NRCan) topographic raster maps provide a representation of the topographic phenomena of the Canadian landmass. Several editions of paper maps have been produced over time in order to offer improved products compared to their predecessors in terms of quality and the most up to date information possible. The georeferenced maps can be used in a Geographic Information System (GIS). In all cases, they accurately represent the topographical data available for the date indicated (validity date). The combination of CanMatrix and CanTopo data provides complete national coverage. • CanMatrix - Print Ready: Raster maps produced by scanning topographic maps at scales from 1:25 000 to 1:1 000 000. This product is not georeferenced. Validity dates: 1944 to 2005 (1980 on average). Available formats: PDF and TIFF • CanMatrix - Georeferenced: Raster maps produced by scanning topographic maps at scales of 1:50 000 and 1:250 000. These maps are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1944 to 2005 (1980 on average). Available format: GeoTIFF • CanTopo: Digital raster maps produced mainly from the GeoBase initiative, NRCan digital topographic data, and other sources. Approximately 2,234 datasets (maps) at scale of 1:50 000, primarily covering northern Canada, are available. CanTopo datasets in GeoPDF and GeoTIFF format are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1946 to 2012 (2007 on average). Available formats: PDF, GeoPDF, TIFF and GeoTIFF
-
This publication contains vector data (shapefile) of the post-harvest forest residues in Canada for the bioenergy/bioproducts sector in oven-dry tonnes per year (ODT/yr) over the next 20 years. The maps were produced using different remote sensing products. We used forest attribute data at 250 m MODIS for the years 2001 and 2011 (Beaudoin et al. 2014 and 2018) combined with forest cover changes for the years 1985 to 2015 contained in the CanLaD dataset at 30 m Landsat(Guindon et al. 2017 and 2018). Results of available biomass (in the form of harvest residues) were reported at the 10 km x 10 km scale, while the map of mature forests in Canada was prepared at the forest management unit (FMU) level. Briefly, our methodology consisted of three steps: 1- create a map of mature forests for the year 2011, based on 2001-2010 average cut volumes within FMUs; 2- develop an annual cut rate from the area harvested within FMUs from 1985 to 2015 and; 3- define the amount of biomass in the form of forest residues available for the bioenergy sector. The biomass of branches and leaves of forest attribute data was used as a proxy to define the biomass of forest residues available. Nationally, the average biomass of forest residues available after harvest is 26 ± 16 ODT/ha, while the total annual availability for all managed forests in Canada was 21 million ODT/yr. A scientific article gives additional details on the methodology: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues across the Canadian managed forest. Can. J. For. Res. 48: http://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0080 Reference for this dataset: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Maps forecasting the availability of logging residues in Canada. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/5072c495-240c-42a3-ad55-c942ab37c32a
-
The MODIS surface albedo dataset was produced by the Canada Center for Remote Sensing (CCRS), Natural Resources Canada. The dataset represents the solar shortwave broadband surface albedo and it is at a 10-day interval covering the entire Canadian landmass as well as northern USA, Alaska, and the Greenland. The dataset was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA satellite which provides a global coverage every 1-2 days in 36 spectral bands ranging from visible to infrared and to thermal wavelengths between 405 and 14,385 nm, and was available since 2000. For the estimation of surface albedo, the first seven spectral bands of B1 to B7 ranging from 459 nm to 2155 nm were used. B1 and B2 have a 250 meter resolution and B3 to B7 have a 500 meter resolution. A downscaling method using a regression and normalization scheme was employed to downscale the bands B3 to B7 to 250 meter resolution while preserving radiometric properties of the original data. To obtain clear-sky observations from MODIS, composite images for a 10 day period were generated by using a series of advanced algorithms (Luo et al., 2008). The 10-day composites of B1-B7 reflectance were then used to retrieve spatially continuous spectral albedo by using a combined land/snow BRDF (Bi-directional Reflectance Distribution Function) model. In that method, the modified RossThick-LiSparse BRDF model (Maignan et al., 2004) for land and Kokhanovsky and Zege’s model (2004) for snow are linearly combined for mixed surface conditions. They are weighted by snow fraction (0.0 ~ 1.0). The seven spectral albedo were then converted into the shortwave broadband surface albedo using the empirical MODIS polynomial conversion equation of Liang et al. (1999). The data product is in LCC (Lambert Conformal Conic) projection with a 250m pixel resolution. There are 36 albedo images per year. A dataset representing the pixel state (e.g. cloud/shadow, snow/ice, water, land, et al.) was also generated for each 10-day corresponding to the surface albedo product. References: Kokhanovsky, A. A. and Zege, E. P., 2004, Scattering Optics of Snow, Applied Optics, 43, 1589-1602, doi:10.1364/AO.43.001589, 20. Liang, S., Strahler, A.H., Walthall, C., 1999. Retrieval of land surface albedo from satellite observations: a simulation study. J. Appl. Meteorol. 38, 712–725. Luo, Y., Trishchenko, A.P., Khlopenkov, K.V., 2008. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 112, 4167–4185. Maignan, F., F.M. Bréon and R. Lacaze, 2004, Bidirectional reflectance of Earth targets : evaluation of analytical models using a large set of spaceborne measurements with emphasis with the hot spot, Remote Sens. Environ., 90, 210-220.
-
Each pixel value corresponds to the best quality maximum NDVI recorded within that pixel over the week specified. Poor quality pixel observations are removed from this product. Observations whose quality is degraded by snow cover, shadow, cloud, aerosols, and/or low sensor zenith angles are removed (and are assigned a value of “missing data”). In addition, negative Max-NDVI values, occurring where R reflectance > NIR reflectance, are considered non-vegetated and assigned a value of 0. This results in a Max-NDVI product that should (mostly) contain vegetation-covered pixels. Max-NDVI values are considered high quality and span a biomass gradient ranging from 0 (no/low biomass) to 1 (high biomass).
-
Topographic maps produced by Natural Resources Canada conform to the National Topographic System (NTS) of Canada. Indexes are available in three standard scales: 1:1,000,000, 1:250,000 and 1:50,000. The area covered by a given mapsheet is determined by its latitude and longitude. 1:1,000,000 mapsheets are identified by a combination of three numbers (e.g. 098). 1:250,000 mapsheets are identified by a combination of numbers, and letters ranging from A through P (e.g. 098C). Sixteen smaller segments (1 to 16) form blocks used for 1:50,000 mapping (e.g. 098C03).
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistrated. For this dataset, the spatial resolutions are: 25 cm for the year 1950, 75 cm for the year 1960, 50 cm for the year 1964, 75 cm for the year 1973, 75 cm for the year 1994 and 50 cm for the year 2001. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
The ‘Circa 1995 Landcover of the Prairies’dataset is a geospatial raster data layer portraying the rudimentaryland cover types of all grain-growing areas of Manitoba, Saskatchewan, Alberta and northeastern British Columbia at a 30-metre resolution for the 1995 timeframe. It is the collection of all the classified imagery (1993 to 1995) of the Western Grain Transition Payment Program (WGTPP) assembled into a single seamless raster data layer.
-
The 0.34 cm resolution orthomosaic was created from unmanned aerial vehicle (UAV) imagery acquired from a single day survey, July 28th 2016, in Cambridge Bay, Nunavut. Five control points taken from a Global Differential Positioning System were positioned in the corners and the center of the vegetation survey. The orthomosaic covering 525m2 was produced by Canada Centre for Remote Sensing /Canada Centre for Mapping and Earth Observation. The UAV survey was completed in collaboration with the Canadian High Arctic Research Station (CHARS) for northern vegetation monitoring research. For more information, refer to our current Arctic vegetation research: Fraser et al; "UAV photogrammetry for mapping vegetation in the low-Arctic" Arctic Science, 2016, 2(3): 79-102. http://www.nrcresearchpress.com/doi/abs/10.1139/AS-2016-0008.
-
Data include a collection of annual land cover maps derived from MODIS 250 m spatial resolution remotely sensed imagery for the period 2000 to 2011. Processing of the time series was designed to reduce the occurrence of false change between maps. The method was based on change updating as described in Pouliot et al. (2011, 2013). Change detection accounted for both abrupt changes such as forest harvesting and more gradual changes such as recurrent insect defoliation. To determine the new label for a pixel identified as change, an evidential reasoning approach was used to combine spectral and contextual information. The 2005 MODIS land cover of Canada at 250 m spatial resolution described in Latifovic et al. (2012) was used as the base map. It contains 39 land cover classes, which for time series development was considered too detailed and was reduced to 25 and 19 class versions. The 19 class version corresponds to the North America Land Change Monitoring System (NALCMS) Level 2 legend as described in Latifovic et al. (2012). Accuracy assessment of time series is difficult due to the need to assess many maps. For areas of change in the time series accuracy was found to be 70% based on the 19 class thematic legend. This time series captures the spatial distribution of dominant land cover transitions. It is intended for use in modeling, development of remote sensing products such as leaf area index or land cover based albedo retrievals, and other exploratory analysis. It is not appropriate for use in any rigorous reporting or inventory assessments due to the accuracy of the land cover classification and uncertainty as to the capture of all relevant changes for an application. NOTE: To see this entire product in the map viewer, use a base map in the "World" section (EPSG: 3857).
Arctic SDI catalogue