Topic
 

imageryBaseMapsEarthCover

467 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 467
  • Categories  

    Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors were used to generate the circa 2010 Mosaic of Canada at 30 m spatial resolution. All scenes were processed to Standard Terrain Correction Level 1T by the United States Geological Survey (USGS). Further processing performed by the Canada Centre for Remote Sensing included conversion of sensor measurements to top of atmosphere reflectance, cloud and cloud shadow detection, re-projection, selection of best measurements, mosaic generation ,noise removal and quality control. To provide a clear sky measurement for each location in Canada, data from the years 2009, 2010, and 2011 were used, but 2010 was preferentially selected. Bands 3 (0.63-0.69 µm), 4 (0.76-0.90 µm), 5 (1.55-1.75 µm), and 7 (2.08-2.35 µm) are provided in this version as significant atmosphere effects strongly limit the quality of the blue (0.45-0.52 µm) and green (0.52-0.60 µm) bands. Multi-criteria compositing was used for the selection of the most representative pixel. For ETM+ onboard Landsat 7 a scan line malfunction caused missing lines of data in all scenes collected after May 2003. Atmosphere and target variability between scenes cause these lines to have significant radiometric differences in some cases. A Fourier transformation approach was applied to correct this occurrence. This mosaic was developed for land cover and biophysical mapping applications across Canada. Other applications of these data are also possible, but should consider the temporal and spectral limitations of the product. Research to enhance the spatial, spectral and temporal aspects are in development for future versions of moderate resolution products from historical Landsat sensors, Landsat 8, and Sentinel 2 data.

  • Categories  

    Land cover classification image for the Aspen Parkland ecoregion of Saskatchewan with a spatial resolution of 10m. The goal of this land cover classification was to distinguish native from tame grasslands. The classification was based on Sentinel-1 and Sentinel-2 imagery using machine learning analysis in the Google Earth Engine platform. The classification was conducted on imagery acquired in 2022, and the classification model was built with field data collected in 2020 - 2022. There are eight classes in total: native grassland, tame grassland, mixed/altered grassland, cropland, shrubs, trees, water, and urban area. Download: here The Prairie Landscape Inventory (PLI) aims to develop improved methods of assessing land cover and land use for conservation. Native grassland has historically been one of the hardest to map at-risk ecosystems because of the challenges in distinguishing native grassland from tame grassland land cover using remotely sensed imagery. This classification distinguishes native grassland from tame grassland and will provide valuable information for habitat suitability for native grassland species, identifying high biodiversity potential and invasion risk potential. The classification map has eight (8) classes:  1. Cropland This class represents all cultivated areas with crop commodities, including corn, pulse, soybeans, canola, grains, and summer-fallow. 2. Native grassland This class represents the native grassland areas that are composed of at least 75% native grass, sedge and forb species, such as the needle grasses and wheatgrasses along with June grass and blue grama grass. Unbroken grassland that is invaded by species like Kentucky bluegrass, crested wheatgrass or smooth brome, such that native cover is less than 75%, is not considered native for the purpose of this project.  3. Mixed/altered grassland This class represents a grassland with a mix of less than 75% native grass, sedge and forb species or less than 75% tame species. These are grassland areas that do not fit into either of the native or tame grassland definitions.  4. Tame grassland This class represents the tame grassland areas that are composed of at least 75% seeded or planted species with introduced grasses and forb species such as crested wheatgrass, smooth brome, Kentucky bluegrass, alfalfa, and sweet clover. 5. Water This class represents permanent water locations such as lakes and rivers. 6. Shrubs This class represents the sites dominated by woody vegetation of relatively low height (generally +/-2 meters) with shrub canopy typically >20% of total vegetation cover. 7. Trees This class represents the coniferous/deciduous trees, mixed-wood area, and other trees >2 meters height with tree canopy typically >20% of total vegetation cover. 9. Urban area This class represents both urban municipalities and buffered roads. Urban municipalities was used to mask the urban/developed area class of the Annual Crop Inventory 2021 (Agriculture Agri-Food Canada).   Colour Classes: Value Label Red Green Blue 1 Cropland 255 255 190 2 Native grassland 168 168 0 3 Mixed/altered grassland 199 215 158 4 Tame grassland 245 202 122 5 Water 190 232 255 6 Shrubs 205 102 153 7 Trees 66 128 53 9 Urban area 128 128 128 Accuracy metrics This model has an overall accuracy of 73 per cent. The table below summarizes the user’s accuracy, producer’s accuracy, and F1-score of the model on the validation dataset. Class User’s accuracy (%) Producer’s accuracy (%) F1-score Cropland 91.2 94.5 0.93 Native grassland 74.8 73.1 0.74 Mixed grassland 44.7 44.1 0.44 Tame grassland 67.9 72.8 0.70 Water 94.8 91.3 0.93 Shrubs 61.2 51.1 0.56 Trees 89.7 94.6 0.92

  • Categories  

    Land cover classification image for the Cypress Upland ecoregion of Saskatchewan with a spatial resolution of 10m. The goal of this land cover classification was to distinguish native from tame grasslands. The classification was based on Sentinel-1 and Sentinel-2 imagery using machine learning analysis in the Google Earth Engine platform. The classification was conducted on imagery acquired in 2023, and the classification model was built with field data collected in 2023. There are seven classes in total: native grassland, tame grassland, cropland, shrubs, trees, water, and urban area. Download: here The Prairie Landscape Inventory (PLI) aims to develop improved methods of assessing land cover and land use for conservation. Native grassland has historically been one of the hardest to map at-risk ecosystems because of the challenges in distinguishing native grassland from tame grassland land cover using remotely sensed imagery. This classification distinguishes native grassland from tame grassland and will provide valuable information for habitat suitability for native grassland species, identifying high biodiversity potential and invasion risk potential.   The classification map has seven (7) classes. The mixed grassland class included in the PLI land cover classification for other prairie ecoregions was not modelled in the Cypress Upland. 1. Cropland This class represents all cultivated areas with crop commodities, including corn, pulse, soybeans, canola, grains, and summer-fallow. 2. Native grassland This class represents the native grassland areas that are composed of at least 75% native grass, sedge and forb species, such as the needle grasses and wheatgrasses along with June grass and blue grama grass. Unbroken grassland that is invaded by species like Kentucky bluegrass, crested wheatgrass or smooth brome, such that native cover is less than 75%, is not considered native for the purpose of this project.  4. Tame grassland This class represents the tame grassland areas that are composed of at least 75% seeded or planted species with introduced grasses and forb species such as crested wheatgrass, smooth brome, Kentucky bluegrass, alfalfa, and sweet clover. 5. Water This class represents permanent water locations such as lakes and rivers. 6. Shrubs This class represents the sites dominated by woody vegetation of relatively low height (generally +/-2 meters) with shrub canopy typically >20% of total vegetation cover. 7. Trees This class represents the coniferous/deciduous trees, mixed-wood area, and other trees >2 meters height with tree canopy typically >20% of total vegetation cover. 9. Urban area This class represents both urban municipalities and buffered roads. Urban municipalities was used to mask the urban/developed area class of the Annual Crop Inventory 2021 (Agriculture Agri-Food Canada). Colour Classes: Value Label Red Green Blue 1 Cropland 255 255 190 2 Native grassland 168 168 0 4 Tame grassland 245 202 122 5 Water 190 232 255 6 Shrubs 205 102 153 7 Trees 66 128 53 9 Urban area 128 128 128 Accuracy metrics This model has an overall accuracy of 92 per cent. The table below summarizes the user’s accuracy, producer’s accuracy, and F1-score of the model on the validation dataset. Class User’s accuracy (%) Producer’s accuracy (%) F1-score Cropland 96 96 0.96 Native grassland 90 93 0.92 Tame grassland 93 71 0.82 Water 100 100 1.00 Shrubs 77 88 0.83 Trees 96 996 0.96

  • Categories  

    AAFC’s Canadian Ag-Land Monitoring System (CALMS), operational since 2009, was developed by AAFC’s Earth Observation Service (EOS) to deliver weekly NDVI-based maps of crop condition in near-real-time. The CALMS uses data collected by the Moderate Resolution Imaging Spectro-radiometer (MODIS), a sensor mounted onboard NASA’s Terra satellite that has been acquiring data since February 2000. The state-of-the-art radiometric, spectral and spatial resolutions of MODIS Terra make it particularly well-suited for large-scale vegetation mapping and assessment. Crop condition (NDVI) maps are generated weekly by AAFC throughout Canada’s growing season, the period defined as the six-month period stretching from the start of Julian week 12 (end of March) to the end of Julian week 44 (late October). Weeks of the year are defined according to the ISO 8601 week-numbering standard, where weeks start on a Monday and end the following Sunday. CALMS products are generated in the MODIS native Integrated Sinusoidal (ISIN) projection for the region covering the twelve MODIS tiles h09v03 to h14v03 and h09v04 to h14v04.

  • Categories  

    Nú hafa Landmælingar Íslands útbúið vefkort með því að staðsetja og klippa saman hin svokölluðu Herforingjaráðskort. Eftirfarandi lýsing á Herforingjaráðskortum er tekin af vef Landsbókasafns: Á síðasta áratug 19. aldar varð dönskum yfirvöldum ljóst að þau kort sem til voru af Íslandi stæðust ekki þær kröfur sem gera þyrfti í samfélagi þess tíma. Bestu kort af Íslandi sem buðust voru í stórum dráttum byggð á strandmælingum danska sjóhersins sem fram fóru á árunum 1801-1818 annars vegar og hins vegar á kortum Björns Gunnlaugssonar sem byggð voru á fyrrnefndum strandmælingum og eigin mælingum Björns á árunum 1831-1843. Á fjárlögum 1899 voru veittar 5000 krónur og skyldi hefja nýjar þríhyrninga- og strandmælingar á Reykjanesi. Árið 1900 var gefin út í Danmörku tilskipun um að sendur skyldi leiðangur til Íslands til að mæla hér grunnlínu og hnattstöðu. Síðan var ætlunin að mæla þríhyrninganet út frá nýju grunnlínunni. Hingað voru sendir danskir liðsforingjar og sumarið 1900 var unnin ýmis undirbúningsvinna. Árið 1902 höfðu fjárveitingar verið auknar svo að rétt þótti að hefjast handa. Byrjað var á Hornafirði og mælt vestur ströndina og um lágsveitir Suðurlands en uppsveitum og hálendi frestað. Verkinu var svo haldið áfram tvö næstu árin en féll niður 1905 vegna fjárskorts og annarra anna hjá Landmælingadeild danska herforingjaráðsins (Generalstabens topografiske Afdeling) er tókst verkið á hendur. Eftir eins árs bið var þráðurinn tekinn upp að nýju enda bættist nú við fjárstyrkur úr ríkissjóði Dana. Á árunum 1906-1914 var unnið öll sumur, nema 1909, þegar ekkert var aðhafst. Var þá lokið byggðamælingum sunnanlands og mælt um Vesturland, norður og austur um Húnaflóa. Árangurinn var 117 kortblöð af þriðjungi landsins, suður- og vesturhluta, í mælikvarða 1:50.000 (auk nokkurra sérkorta af afmörkuðum svæðum). Þau eru gjarnan nefnd herforingjaráðskortin í höfuðið á þeim sem stóðu fyrir gerð þeirra.

  • Categories  

    This collection is a legacy product that is no longer maintained. It may not meet current government standards. The correction matrices for the National Topographic Data Base (NTDB), also known under the acronym CORMAT, are products derived from the planimetric enhancement of NTDB data sets at the 1:50 000 scale. The correction matrix enables users to enhance the geometric accuracy of the less accurate NTDB. The matrix is a set of points arrayed on a regular 100-m grid. Each point describes the planimetric correction (DX, DY) to be applied at this location. The position of the points is given in UTM (Universal Transverse Mercator projection) coordinates based on the North American Datum of 1983 (NAD83) . Each file constitutes a rectangular area covering the entire corresponding NTDB data set. Its delimitation corresponds more or less to National Topographic System (NTS) divisions at the 1:50 000 scale. All NTDB data sets at the 1:50 000 scale whose original accuracy was less than 30 m can thus be geometrically corrected. A CORMAT data set contains a list of coordinates and the corresponding corrections to be applied in the form X Y DX DY. Related Products: [National Topographic Data Base (NTDB), 1944-2005](https://open.canada.ca/data/en/dataset/1f5c05ff-311f-4271-8d21-4c96c725c2af)

  • This publication contains a raster maps at 250 m resolution of the merchantable volume (m3/ha) of the mature Canadian forest available for harvesting in the next 20 years (2011 to 2031). The maps were produced from remote sensing products at a spatial resolution of 250 m on the MODIS pixel grid and 30 m on the Landsat pixel grid. More specifically, we used forest attribute data at the 250 m pixel for the years 2001 and 2011 (Beaudoin et al 2014 and 2018) combined with forest cover changes for the years 1985 to 2015 at 30 m (Guindon et al. 2017 and 2018). The map of mature forests in Canada was prepared at the forest management unit (FMU) level and therefore exclude private lands. To be considered mature (i.e. available for cutting in the next 20 years), the forest pixels of Beaudoin et al. (2018) was to have a merchantable volume per ha equal to or greater than 80% of the average merchantable volume of the pixels that were harvested between 2001 and 2011 per forest management unit. A scientific article gives additional details on the methodology: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Can. J. For. Res. 48: http://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0080 Reference for this dataset: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/dd94871a-9a20-47f5-825b-768518140f35

  • Categories  

    Leaf area index (LAI) quantified the density of vegetation irrespective of land cover. LAI quantifies the total foliage surface area per ground surface area. LAI has been identified by the Global Climate Observing System as an essential climate variable required for ecosystem, weather and climate modelling and monitoring. This product consists of a national scale coverage (Canada) of monthly maps of the maximum LAI during a growing season (May-June-july-August-September) at 20m. References: L. Brown, R. Fernandes, N. Djamai, C. Meier, N. Gobron, H. Morris, C. Canisius, G. Bai, C. Lerebourg, C. Lanconelli, M. Clerici, J. Dash. Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States IISPRS J. Photogramm. Remote Sens., 175 (2021), pp. 71-87, https://doi.org/10.1016/j.isprsjprs.2021.02.020. https://www.sciencedirect.com/science/article/pii/S0924271621000617 Richard Fernandes, Luke Brown, Francis Canisius, Jadu Dash, Liming He, Gang Hong, Lucy Huang, Nhu Quynh Le, Camryn MacDougall, Courtney Meier, Patrick Osei Darko, Hemit Shah, Lynsay Spafford, Lixin Sun, 2023. Validation of Simplified Level 2 Prototype Processor Sentinel-2 fraction of canopy cover, fraction of absorbed photosynthetically active radiation and leaf area index products over North American forests, Remote Sensing of Environment, Volume 293, https://doi.org/10.1016/j.rse.2023.113600. https://www.sciencedirect.com/science/article/pii/S0034425723001517

  • Categories  

    GeoAI are buildings, hydrography, forests, and roads automatically extracted using Deep Learning models applied to a source dataset, typically aerial or satellite images. The primary aim of GeoAI is to increase Canada's availability of high-resolution foundational geospatial data for both spatial and temporal coverage. ‌ The infrastructure and expertise put in place by NRCan enables a rapid, efficient, and scalable data creation process through the use of leading-edge technology and Artificial Intelligence models. Published datasets for a given source can be revisited at a later date as more accurate models are developed and put into production. For now, only static files are available, but as the series develops, new products and services will be added.

  • This is a Mosaic of Canada which is made from 121 images captured by Canadian satellite RADARSAT-2. These images were acquired from May 1, 2013 to June 1, 2013. The color variation represents the changes in soil texture, roughness and the level of soil moisture. (Credit: RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd. (2013) - All Rights Reserved. RADARSAT is an official mark of the Canadian Space Agency.)