Topic
 

imageryBaseMapsEarthCover

482 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 482
  • Categories  

    Mackenzie Valley Air Photo Digital Orthotiles

  • Categories  

    This data publication contains a set of files in which areas affected by fire or by harvest from 1984 to 2015 are identified at the level of individual 30m pixels on the Landsat grid. Details of the product development can be found in Guindon et al (2018). The change detection is based on reflectance-corrected yearly summer (July and August) Landsat mosaics from 1984 to 2015 created from individual scenes developed from USGS reflectance products (Masek et al, 2006; Vermote et al, 2006). Briefly, the change detection method uses a six-year temporal signature centered on the disturbance year to identify fire, harvest and no change. The signatures were derived from visually-interpreted disturbance or no-change polygons that were used to fit a decision tree model. The method detects about 91% of the areas harvested and 85% of the areas burned across Canada’s forests over the study period, but overestimates areas disturbed in the two initial and mostly in the two final years of the 1985 to 2015 time series. This is caused by the absence of appropriate pre-disturbance and post-disturbance data for the model-based detection and attribution. Disturbance coverage in those four years should therefore be used with caution. As in Guindon et al (2014), the method was designed to minimize commission errors and has a disturbance class attribution success rate of about 98%. The attribution success rate of disturbance year for fire is of about 69% for the exact year and of about 99% when attribution to the following year is also considered as a success. This common one-year lag is mostly due to the use of mid-summer Landsat mosaics for the analysis that will cause spring and fall events of the same year to be attributed to successive years. For example, a fire that occurred in the fall of 2004 (after July and August), will be detected and attributed to 2005, while for a fire that occurred in the spring of 2004 will be detected and attributed to 2004. The presence of clouds and shadows or image availability causes 10% of missing data annually and therefore can too delay the capture of events. The data provides uniform spatial and temporal information on fire and harvest across all provinces and territories of Canada and is intended for strategic-level analysis. Since no attention was given to other minor disturbances such as mining, road or flooding, the product should not be used for their identification. Finally, calibration datasets were developed for only three major forest pests (mountain pine beetle, eastern spruce budworm and forest tent caterpillar), but were folded within the “no-change” class in order to minimize commission errors for fire and harvest . Less common pests for which validation datasets are hard to develop were not considered and therefore could in rare circumstances generate false fire events. Considering that area having two (3.3%) to three disturbances (less than 1%) events are not common, only the most recent disturbance is provided, overlapping older disturbances in these rare case. ## Please cite this dataset as: Guindon, L., P. Villemaire, R. St-Amant, P.Y. Bernier, A. Beaudoin, F. Caron, M. Bonucelli and H. Dorion. 2017. Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984. https://doi.org/10.23687/add1346b-f632-4eb9-a83d-a662b38655ad ## Scientific article citation: The creation, validation and limitations of the CanLaD product are described in the Supplementary Material file associated with the following article: Guindon, L.; Bernier, P.Y.; Gauthier, S.; Stinson, G.; Villemaire, P.; Beaudoin, A. 2018. Missing forest cover gains in boreal forests explained. Ecosphere, 9 (1) Article e02094. doi:10.1002/ecs2.2094. ## Cited references: Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., and Lim, T-K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1):68-72. http://dx.doi.org/10.1109/LGRS.2005.857030. Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. http://dx.doi.org/10.1016/j.rse.2016.04.008.

  • Categories  

    Polygons containing the date of capture of the Landsat images used to create the first version of the Baseline Thematic Mapping v1 (BTM1). This spatial view is only meaningful in conjunction with the satellite images or the BTM data derived from the satellite images. The images were captured from 1990 to 1997

  • Categories  

    The Canadian long term satellite data record (LTDR) derived from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) data was produced by the Canada Center for Remote Sensing (CCRS). Processing included: geolocation, calibration, and compositing using Earth Observation Data Manager (Latifovic et al. 2005), cloud screening (Khlopenkov and Trishchenko, 2006), BRDF correction (Latifovic et. al., 2003), atmosphere and other corrections as described in Cihlar et. al. (2004). For temporal analysis of vegetation cross-sensor correction of Latifovic et al. (2012) is advised. Data collected by the AVHRR instrument on board the National Oceanic and Atmospheric Administration (NOAA) 9,11,14,16,17,18 and 19 satellites were used to generate Canada-wide 1-km 10-day AVHRR composites. Data are available starting in 1985. It is important to note that there are three types of AVHRR sensors: (i) AVHRR-1 flown onboard TIROS-N, NOAA-6, NOAA-8, and NOAA-10; (ii) AVHRR-2 flown onboard NOAA-7, NOAA-9, NOAA-11, NOAA-12, and NOAA-14; and (iii) AVHRR-3 currently operational onboard NOAA-15, NOAA-16, NOAA-17, NOAA-18 and NOAA-19. The AVHRR-1 has four channels, AVHRR-2 has five channels and the AVHRR-3 has six channels, although only five channels of AVHRR-3 can be operational at any one time. As such, channels 3A (1.6 m) and 3B (3.7 m) work interchangeably. The processing procedure was designed to minimize artefacts in AVHRR composite images. There are thirty six 10-day image composites per year. The following three processing levels are provided: P1) top of atmosphere reflectance and brightness temperature, P2) reflectance at surface and surface temperature and P3) reflectance at surface normalized to a common viewing geometry (BRDF normalization). The processing level P1 and P2 are provided for all 36 composites while level P3 is provided for 21 composites from April – October.

  • Categories  

    FCOVER corresponds to the amount of the ground surface that is covered by vegetation, including the understory, when viewed vertically (from nadir). FCOVER is an indicator of the spatial extent of vegetation independent of land cover class. It is a dimensionless quantity that varies from 0 to 1, and as an intrinsic property of the canopy, is not dependent on satellite observation conditions.This product consists of FCOVER indicator during peak-season (June-July-August) at 100m resolution covering Canada's land mass.

  • Categories  

    Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions vary from 10 cm to 50 cm. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html

  • Categories  

    Landcover dataset created for the agricultural portion of Saskatchewan. Download: here A satellite imagery classification of Southern Saskatchewan based mainly on 1994 Landsat5 imagery. Developed by the Saskatchewan Research Council after 1997. Background: A group of Provincial and Federal Agencies formed a partnership in March of 1997 to share the cost of obtaining satellite imagery and interpreting this imagery to create a landcover dataset for the agricultural portion of Saskatchewan. The partnership included Saskatchewan Research Council (SRC), Saskatchewan Agriculture and Food (SAF), Saskatchewan Crop Insurance (SCI), Saskatchewan Property Management Corporation (SPMC), Environment Canada, the Prairie Farm Rehabilitation Administration (PFRA) and Saskatchewan Environment Resource Management (SERM). The University of Regina was also involved as an 'in kind' partner providing research services in the area of land cover classifications, accuracy assessment and data conversions. The Partnership Agreement required SRC (partner doing the bulk of data processing) to provide digital files for each of 328 1:50,000 NTS map sheets. The digital files included not only raw imagery, but also one file for each map sheet where the imagery was classified into 24 landcover types. The accuracy of this classification was to be demonstrated by SRC to be at least 90 per cent correct. In addition to the data processing done by SRC, SPMC provided the necessary positional control data (road intersection coordinates) and verified the positional accuracy of the final product. The other partners provided feedback to SRC on classification errors, which improved the overall accuracy of the final product. Classification Value No Data 0 Crop Land 1 Hay Crops (Forage) 2 Native Dominant Grass Lands 3 Tall Shrubs 4 Pasture (Seeded Grass Lands) 5 Hardwoods (Open Canopy) 6 Hardwoods (Closed Canopy) 7 Jack Pine (Closed Canopy) 8 Jack Pine (Open Canopy) 9 Spruce (Close Canopy) 10 Treed Rock 13 Recent Burns 14 Revegetating Burns 15 Cutovers 16 Water Bodies 17 Marsh 18 Herbaceous Fen 19 Mud/Sand/Saline 20 Shrub Fen (Treed Swamp) 21 Treed Bog 22 Open Bog 23 Slopes 25 Slopes 26 0. No Data 1. Crop Land - All lands dedicated to the production of annual cereal, oil seed and other specialty crops, and typically cultivated on an annual basis.  2. Hay Crops (Forage) - Alfalfa and alfalfa/tame grass mixtures.  3. Native Dominant Grass Lands - Native dominant grasslands/may contain tame grasses and herbs.  4. Tall Shrubs - Communities containing both low and tall shrub, snowberry, saskatoon, chokecherry, buffaloberry, and willow.  5. Pasture (Seeded Grass Lands) - Grassland dominated by tame grass species.  6. Hardwoods (Open Canopy) - Corresponds to Provincial Forest Inventory: over 75% hardwoods; 10-30% crown closure.  7. Hardwoods (Closed Canopy) - Corresponds to Provincial Forest Inventory: over 75% hardwoods; 30-100% crown closure.  8. Jack Pine (Closed Canopy) - Similar to Provincial Forest Inventory: 75% or greater Jack Pine; 30-100% crown closure.  9. Jack Pine (Open Canopy) - Similar to Provincial Forest Inventory: 75% or greater Jack Pine; 10-30% crown closure.  10. Spruce (Close Canopy) - Similar to Provincial Forest Inventory: 75% or greater Black and White Spruce; 10-30% crown closure. 11. Spruce: Open Canopy - Similar to Provincial Forest Inventory: 75% or greater Black and White Spruce; 10-30% crown closure. 12. Mixed Woods - All softwood/hardwood mixtures.  13. Treed Rock - Areas of exposed bedrock with generally less then 10% tree cover. Dominant species are Jack Pine and Black Spruce.  14. Recent Burns - All areas that have been recently burned over by wildfires.  15. Revegetating Burns - Burns with a regrowth of commercial timber generally 1-5 metres in height.  16. Cutovers - Areas where commercial timber has been completely or partially removed by logging operations.  17. Water Bodies - Consists of all open water - lakes, rivers, streams, ponds, and lagoons.  18. Marsh - Dominated by sedge and wetland grasses.  19. Herbaceous Fen - Fens dominated by herbaceous species.  20. Mud/Sand/Saline  21. Shrub Fen (Treed Swamp) - Fens dominated by shrubby species.  22. Treed Bog - Peat-covered or peat-filled depressions with a high water table and a surface carpet of moss, chiefly sphagnum. The bogs have 25% or more canopy by trees greater than one metre tall. The primary species is black spruce.  23. Open Bog - Peat-covered or peat-filled depressions with a high water table and a surface carpet of moss, chiefly sphagnum. 24. Farmstead - Farmstead types, towns, cities, Exposed areas with little or no vegetation or Cloud coverage.  25. Slopes - Steep Valley slopes or hill slopes where aspect and slope prohibit classification. 26. Slopes - Steep Valley slopes or hill slopes where aspect and slope prohibit classification.

  • Categories  

    Each pixel value corresponds to the day-of-week (1-7) from which the Weekly Best-Quality NDVI retrieval is obtained (1 = Monday, 7 = Sunday).

  • Categories  

    This group of maps, which includes the CanMatrix and CanTopo collections, is now a legacy product that is no longer maintained. It may not meet current government standards. Natural Resources Canada's (NRCan) topographic raster maps provide a representation of the topographic phenomena of the Canadian landmass. Several editions of paper maps have been produced over time in order to offer improved products compared to their predecessors in terms of quality and the most up to date information possible. The georeferenced maps can be used in a Geographic Information System (GIS). In all cases, they accurately represent the topographical data available for the date indicated (validity date). The combination of CanMatrix and CanTopo data provides complete national coverage. • CanMatrix - Print Ready: Raster maps produced by scanning topographic maps at scales from 1:25 000 to 1:1 000 000. This product is not georeferenced. Validity dates: 1944 to 2005 (1980 on average). Available formats: PDF and TIFF • CanMatrix - Georeferenced: Raster maps produced by scanning topographic maps at scales of 1:50 000 and 1:250 000. These maps are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1944 to 2005 (1980 on average). Available format: GeoTIFF • CanTopo: Digital raster maps produced mainly from the GeoBase initiative, NRCan digital topographic data, and other sources. Approximately 2,234 datasets (maps) at scale of 1:50 000, primarily covering northern Canada, are available. CanTopo datasets in GeoPDF and GeoTIFF format are georeferenced according to the 1983 North American Reference System (NAD 83). Validity dates: 1946 to 2012 (2007 on average). Available formats: PDF, GeoPDF, TIFF and GeoTIFF

  • Categories  

    Fraction of absorbed photosynthetically active radiation (fAPAR) quantified the absorbed by green foliage. fAPAR has been identified by the Global Climate Observing System as an essential climate variable required for ecosystem, weather and climate modelling and monitoring. This product consists of a national scale coverage (Canada) of monthly maps of fAPAR during a growing season (May-June-July-August-September) at 20m resolution. References: L. Brown, R. Fernandes, N. Djamai, C. Meier, N. Gobron, H. Morris, C. Canisius, G. Bai, C. Lerebourg, C. Lanconelli, M. Clerici, J. Dash. Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States IISPRS J. Photogramm. Remote Sens., 175 (2021), pp. 71-87, https://doi.org/10.1016/j.isprsjprs.2021.02.020. https://www.sciencedirect.com/science/article/pii/S0924271621000617 Richard Fernandes, Luke Brown, Francis Canisius, Jadu Dash, Liming He, Gang Hong, Lucy Huang, Nhu Quynh Le, Camryn MacDougall, Courtney Meier, Patrick Osei Darko, Hemit Shah, Lynsay Spafford, Lixin Sun, 2023. Validation of Simplified Level 2 Prototype Processor Sentinel-2 fraction of canopy cover, fraction of absorbed photosynthetically active radiation and leaf area index products over North American forests, Remote Sensing of Environment, Volume 293, https://doi.org/10.1016/j.rse.2023.113600. https://www.sciencedirect.com/science/article/pii/S0034425723001517