imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Our Imagery Base Maps and Mosaics of a number of Raster Datasets. This includes the ASTER DEM, CDED and Shaded Relief Datasets. As well as a number of mosaics, including SPOT, RapidEye, Landsat, and MVI Landcover data.
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions are: 25 cm for the year 1950, 50 cm for the year 1959, 50 cm for the year 1967, 50 cm for the year 1972, 50 cm for the year 1978 and 70 cm for the year 1982. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors were used to generate the circa 2010 Mosaic of Canada at 30 m spatial resolution. All scenes were processed to Standard Terrain Correction Level 1T by the United States Geological Survey (USGS). Further processing performed by the Canada Centre for Remote Sensing included conversion of sensor measurements to top of atmosphere reflectance, cloud and cloud shadow detection, re-projection, selection of best measurements, mosaic generation ,noise removal and quality control. To provide a clear sky measurement for each location in Canada, data from the years 2009, 2010, and 2011 were used, but 2010 was preferentially selected. Bands 3 (0.63-0.69 µm), 4 (0.76-0.90 µm), 5 (1.55-1.75 µm), and 7 (2.08-2.35 µm) are provided in this version as significant atmosphere effects strongly limit the quality of the blue (0.45-0.52 µm) and green (0.52-0.60 µm) bands. Multi-criteria compositing was used for the selection of the most representative pixel. For ETM+ onboard Landsat 7 a scan line malfunction caused missing lines of data in all scenes collected after May 2003. Atmosphere and target variability between scenes cause these lines to have significant radiometric differences in some cases. A Fourier transformation approach was applied to correct this occurrence. This mosaic was developed for land cover and biophysical mapping applications across Canada. Other applications of these data are also possible, but should consider the temporal and spectral limitations of the product. Research to enhance the spatial, spectral and temporal aspects are in development for future versions of moderate resolution products from historical Landsat sensors, Landsat 8, and Sentinel 2 data.
-
The dataset includes two data products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) imager operated by the US National Oceanic and Atmospheric Administration (NOAA) onboard Suomi National Polar-Orbiting Partnership (SNPP) satellite: 1) Normalized Difference Vegetation Index (NDVI) 2) Snow Mask (Snow) with supplementary information about data quality and scene identification Each product, NDVI and Snow, has been derived at two spatial resolutions: 1) I-band resolution for 250-m spatial grid (VIIRS image bands I1 and I2) 2) M-band resolution for 500-m spatial grid (VIIRS moderate resolution bands M5 and M7) Datasets are produced with a daily temporal frequency, i.e. one file per day. The study area with the size of 5,700 km × 4,800 km covers Canada and neighboring regions (Trishchenko, 2019). The VIIRS time series are produced from VIIRS /SNPP imagery at CCRS from January 1, 2017.
-
This collection is a legacy product that is no longer supported. It may not meet current government standards. Land Cover information is the result of vectorization of raster thematic data originating from classified Landsat 5 and Landsat 7 ortho-images, for agricultural and forest areas of Canada, and for Northern Territories. The forest cover was produced by the Earth Observation for Sustainable Development (EOSD) project, an initiative of the Canadian Forest Service (CFS) with the collaboration of the Canadian Space Agency (CSA) and in partnership with the provincial and territorial governments. The agricultural coverage is produced by the National Land and Water Information Service (NLWIS) of Agriculture and Agri-Food Canada (AAFC). Northern Territories land cover was realized by the Canadian Centre of Remote Sensing (CCRS). Land Cover data are classified according to a harmonized legend build from the partner's legends. This legend is principally based on the legend described in following publication: EOSD publication: EOSD Land Cover Classification Legend Report, on which CFS and AAFC collaborated. Some classes related to Northern environments where added in order to meet the interpretation of the Northern land cover classification experts. Initially, Land Cover vector data are closest as possible to the source (original raster data). Slight differences can occur because the raster data goes through a data portrayal before being vectorized in order to enhance visual representation such as minimum size, smoothness of polygons and geometry.
-
The MODIS surface albedo dataset was produced by the Canada Center for Remote Sensing (CCRS), Natural Resources Canada. The dataset represents the solar shortwave broadband surface albedo and it is at a 10-day interval covering the entire Canadian landmass as well as northern USA, Alaska, and the Greenland. The dataset was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA satellite which provides a global coverage every 1-2 days in 36 spectral bands ranging from visible to infrared and to thermal wavelengths between 405 and 14,385 nm, and was available since 2000. For the estimation of surface albedo, the first seven spectral bands of B1 to B7 ranging from 459 nm to 2155 nm were used. B1 and B2 have a 250 meter resolution and B3 to B7 have a 500 meter resolution. A downscaling method using a regression and normalization scheme was employed to downscale the bands B3 to B7 to 250 meter resolution while preserving radiometric properties of the original data. To obtain clear-sky observations from MODIS, composite images for a 10 day period were generated by using a series of advanced algorithms (Luo et al., 2008). The 10-day composites of B1-B7 reflectance were then used to retrieve spatially continuous spectral albedo by using a combined land/snow BRDF (Bi-directional Reflectance Distribution Function) model. In that method, the modified RossThick-LiSparse BRDF model (Maignan et al., 2004) for land and Kokhanovsky and Zege’s model (2004) for snow are linearly combined for mixed surface conditions. They are weighted by snow fraction (0.0 ~ 1.0). The seven spectral albedo were then converted into the shortwave broadband surface albedo using the empirical MODIS polynomial conversion equation of Liang et al. (1999). The data product is in LCC (Lambert Conformal Conic) projection with a 250m pixel resolution. There are 36 albedo images per year. A dataset representing the pixel state (e.g. cloud/shadow, snow/ice, water, land, et al.) was also generated for each 10-day corresponding to the surface albedo product. References: Kokhanovsky, A. A. and Zege, E. P., 2004, Scattering Optics of Snow, Applied Optics, 43, 1589-1602, doi:10.1364/AO.43.001589, 20. Liang, S., Strahler, A.H., Walthall, C., 1999. Retrieval of land surface albedo from satellite observations: a simulation study. J. Appl. Meteorol. 38, 712–725. Luo, Y., Trishchenko, A.P., Khlopenkov, K.V., 2008. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 112, 4167–4185. Maignan, F., F.M. Bréon and R. Lacaze, 2004, Bidirectional reflectance of Earth targets : evaluation of analytical models using a large set of spaceborne measurements with emphasis with the hot spot, Remote Sens. Environ., 90, 210-220.
-
Data represents surface water occurrence frequency (percentage), which describes the frequency for each grid appeared as water in the 30 years time period of 1991 to 2020. The data covers Canada’s entire landmass including all transboundary watersheds, and is at 30-meter spatial resolution. The surface water occurrence frequency is derived using the surface water model of Wang et al. (2023) from all-available monthly water data observed by the Landsat satellites (Pekel et al., 2016). Here, permanent waters are represented by 100%, and permanent land surfaces by 0%, of water occurrence for a 30-meter by 30-meter grid. References: Pekel, J.-F., A. Cottam, N. Gorelick, A.S. Belward, 2016, High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422. Wang, S., J. Li, and H. A. J. Russell, 2023, Methods for Estimating Surface Water Storage Changes and Their Evaluations. Journal of Hydrometeorology, DOI: https://doi.org/10.1175/JHM-D-22-0098.1.
-
FCOVER corresponds to the amount of the ground surface that is covered by vegetation, including the understory, when viewed vertically (from nadir). FCOVER is an indicator of the spatial extent of vegetation independent of land cover class. It is a dimensionless quantity that varies from 0 to 1, and as an intrinsic property of the canopy, is not dependent on satellite observation conditions. This product consists of a national scale coverage (Canada) of monthly maps of FCOVER indicator during a growing season (May-June-July-August-September) at 20m resolution. References: L. Brown, R. Fernandes, N. Djamai, C. Meier, N. Gobron, H. Morris, C. Canisius, G. Bai, C. Lerebourg, C. Lanconelli, M. Clerici, J. Dash. Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States IISPRS J. Photogramm. Remote Sens., 175 (2021), pp. 71-87, https://doi.org/10.1016/j.isprsjprs.2021.02.020. https://www.sciencedirect.com/science/article/pii/S0924271621000617 Richard Fernandes, Luke Brown, Francis Canisius, Jadu Dash, Liming He, Gang Hong, Lucy Huang, Nhu Quynh Le, Camryn MacDougall, Courtney Meier, Patrick Osei Darko, Hemit Shah, Lynsay Spafford, Lixin Sun, 2023. Validation of Simplified Level 2 Prototype Processor Sentinel-2 fraction of canopy cover, fraction of absorbed photosynthetically active radiation and leaf area index products over North American forests, Remote Sensing of Environment, Volume 293, https://doi.org/10.1016/j.rse.2023.113600. https://www.sciencedirect.com/science/article/pii/S0034425723001517
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions are: 100 cm for the year 1947 and 50 cm for the year 1977. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
Nú hafa Landmælingar Íslands útbúið vefkort með því að staðsetja og klippa saman hin svokölluðu Herforingjaráðskort. Eftirfarandi lýsing á Herforingjaráðskortum er tekin af vef Landsbókasafns: Á síðasta áratug 19. aldar varð dönskum yfirvöldum ljóst að þau kort sem til voru af Íslandi stæðust ekki þær kröfur sem gera þyrfti í samfélagi þess tíma. Bestu kort af Íslandi sem buðust voru í stórum dráttum byggð á strandmælingum danska sjóhersins sem fram fóru á árunum 1801-1818 annars vegar og hins vegar á kortum Björns Gunnlaugssonar sem byggð voru á fyrrnefndum strandmælingum og eigin mælingum Björns á árunum 1831-1843. Á fjárlögum 1899 voru veittar 5000 krónur og skyldi hefja nýjar þríhyrninga- og strandmælingar á Reykjanesi. Árið 1900 var gefin út í Danmörku tilskipun um að sendur skyldi leiðangur til Íslands til að mæla hér grunnlínu og hnattstöðu. Síðan var ætlunin að mæla þríhyrninganet út frá nýju grunnlínunni. Hingað voru sendir danskir liðsforingjar og sumarið 1900 var unnin ýmis undirbúningsvinna. Árið 1902 höfðu fjárveitingar verið auknar svo að rétt þótti að hefjast handa. Byrjað var á Hornafirði og mælt vestur ströndina og um lágsveitir Suðurlands en uppsveitum og hálendi frestað. Verkinu var svo haldið áfram tvö næstu árin en féll niður 1905 vegna fjárskorts og annarra anna hjá Landmælingadeild danska herforingjaráðsins (Generalstabens topografiske Afdeling) er tókst verkið á hendur. Eftir eins árs bið var þráðurinn tekinn upp að nýju enda bættist nú við fjárstyrkur úr ríkissjóði Dana. Á árunum 1906-1914 var unnið öll sumur, nema 1909, þegar ekkert var aðhafst. Var þá lokið byggðamælingum sunnanlands og mælt um Vesturland, norður og austur um Húnaflóa. Árangurinn var 117 kortblöð af þriðjungi landsins, suður- og vesturhluta, í mælikvarða 1:50.000 (auk nokkurra sérkorta af afmörkuðum svæðum). Þau eru gjarnan nefnd herforingjaráðskortin í höfuðið á þeim sem stóðu fyrir gerð þeirra.