imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Mackenzie Valley Air Photo Digital Orthotiles
-
The RADARSAT Constellation is the evolution of the RADARSAT Program with the objective of ensuring data continuity, improved operational use of Synthetic Aperture Radar (SAR) and improved system reliability. The three-satellite configuration provides daily revisits of Canada's vast territory and maritime approaches, as well as daily access to 90% of the world's surface. RCM is tasked solely by the Government of Canada, to acquire data, first and foremost in support of Government of Canada services and needs. RCM data and services contributes to ensuring the safety and security of Canadians; monitoring and protecting the environment; monitoring of climate change; managing Canada’s natural resources; and stimulating innovation, research and economic development. In addition to these core user areas, there are expected to be a wide range of ad hoc uses of RADARSAT Constellation data in many different applications within the public and private sectors, both in Canada and internationally. The current data set reflects the acquisition plans that are designed to meet the RCM SAR imaging demands of the Government of Canada. These are being made available publicly in advance of the acquisitions. To meet the data needs of the Government of Canada, acquisitions may be changed without notice. After their acquisition and processing, the RCM image products listed in the current data set, will be delivered to the Earth Observation Data Management System - EODMS (https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html) portal of Natural Resources Canada. Users can register to the EODMS portal as public users to retrieve the RCM image products. For those requiring a greater access to RCM imagery consisting of product types or spatial resolutions not available to public users: you may apply to upgrade your public account to an ‘RCM external vetted entity’ EODMS user type account. For more information on this process, please contact the Canadian Space Agency using the information available at the following link : https://www.asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/how-to-become-a-user.asp Publication frequency : I. Future acquisition plans are published every two weeks for a two-week window that starts two weeks from the publication date. As an example, acquisition plan published on April 1st covers acquisitions from April 14 to 27. The next plan is published on April 14th and covers from April 28 to May 11. II. Past acquisitions plans are published monthly and covers a period of one month from the first to the last day As an example, acquisition plan published on April 1st covers acquisition made between the March 1 and March 31. The next plan covers the month of April.
-
BTM ( Baseline Thematic Mapping) Landsat Image Catalogue Acquisition Dates. This polygon coverage contains the date of capture of the Landsat images making up the seamless BC Landsat image catalogue. This is not a multipart feature
-
Index Grid for NTS 1:250,000 scale maps
-
The dataset includes two data products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) imager operated by the US National Oceanic and Atmospheric Administration (NOAA) onboard Suomi National Polar-Orbiting Partnership (SNPP) satellite: 1) Normalized Difference Vegetation Index (NDVI) 2) Snow Mask (Snow) with supplementary information about data quality and scene identification Each product, NDVI and Snow, has been derived at two spatial resolutions: 1) I-band resolution for 250-m spatial grid (VIIRS image bands I1 and I2) 2) M-band resolution for 500-m spatial grid (VIIRS moderate resolution bands M5 and M7) Datasets are produced with a daily temporal frequency, i.e. one file per day. The study area with the size of 5,700 km × 4,800 km covers Canada and neighboring regions (Trishchenko, 2019). The VIIRS time series are produced from VIIRS /SNPP imagery at CCRS from January 1, 2017.
-
This publication contains a raster maps at 250 m resolution of the merchantable volume (m3/ha) of the mature Canadian forest available for harvesting in the next 20 years (2011 to 2031). The maps were produced from remote sensing products at a spatial resolution of 250 m on the MODIS pixel grid and 30 m on the Landsat pixel grid. More specifically, we used forest attribute data at the 250 m pixel for the years 2001 and 2011 (Beaudoin et al 2014 and 2018) combined with forest cover changes for the years 1985 to 2015 at 30 m (Guindon et al. 2017 and 2018). The map of mature forests in Canada was prepared at the forest management unit (FMU) level and therefore exclude private lands. To be considered mature (i.e. available for cutting in the next 20 years), the forest pixels of Beaudoin et al. (2018) was to have a merchantable volume per ha equal to or greater than 80% of the average merchantable volume of the pixels that were harvested between 2001 and 2011 per forest management unit. A scientific article gives additional details on the methodology: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Can. J. For. Res. 48: http://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0080 Reference for this dataset: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/dd94871a-9a20-47f5-825b-768518140f35
-
GeoAI are buildings, hydrography, forests, and roads automatically extracted using Deep Learning models applied to a source dataset, typically aerial or satellite images. The primary aim of GeoAI is to increase Canada's availability of high-resolution foundational geospatial data for both spatial and temporal coverage. The infrastructure and expertise put in place by NRCan enables a rapid, efficient, and scalable data creation process through the use of leading-edge technology and Artificial Intelligence models. Published datasets for a given source can be revisited at a later date as more accurate models are developed and put into production. For now, only static files are available, but as the series develops, new products and services will be added.
-
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors were used to generate the circa 2010 Mosaic of Canada at 30 m spatial resolution. All scenes were processed to Standard Terrain Correction Level 1T by the United States Geological Survey (USGS). Further processing performed by the Canada Centre for Remote Sensing included conversion of sensor measurements to top of atmosphere reflectance, cloud and cloud shadow detection, re-projection, selection of best measurements, mosaic generation ,noise removal and quality control. To provide a clear sky measurement for each location in Canada, data from the years 2009, 2010, and 2011 were used, but 2010 was preferentially selected. Bands 3 (0.63-0.69 µm), 4 (0.76-0.90 µm), 5 (1.55-1.75 µm), and 7 (2.08-2.35 µm) are provided in this version as significant atmosphere effects strongly limit the quality of the blue (0.45-0.52 µm) and green (0.52-0.60 µm) bands. Multi-criteria compositing was used for the selection of the most representative pixel. For ETM+ onboard Landsat 7 a scan line malfunction caused missing lines of data in all scenes collected after May 2003. Atmosphere and target variability between scenes cause these lines to have significant radiometric differences in some cases. A Fourier transformation approach was applied to correct this occurrence. This mosaic was developed for land cover and biophysical mapping applications across Canada. Other applications of these data are also possible, but should consider the temporal and spectral limitations of the product. Research to enhance the spatial, spectral and temporal aspects are in development for future versions of moderate resolution products from historical Landsat sensors, Landsat 8, and Sentinel 2 data.
-
The MODIS surface albedo dataset was produced by the Canada Center for Remote Sensing (CCRS), Natural Resources Canada. The dataset represents the solar shortwave broadband surface albedo and it is at a 10-day interval covering the entire Canadian landmass as well as northern USA, Alaska, and the Greenland. The dataset was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA satellite which provides a global coverage every 1-2 days in 36 spectral bands ranging from visible to infrared and to thermal wavelengths between 405 and 14,385 nm, and was available since 2000. For the estimation of surface albedo, the first seven spectral bands of B1 to B7 ranging from 459 nm to 2155 nm were used. B1 and B2 have a 250 meter resolution and B3 to B7 have a 500 meter resolution. A downscaling method using a regression and normalization scheme was employed to downscale the bands B3 to B7 to 250 meter resolution while preserving radiometric properties of the original data. To obtain clear-sky observations from MODIS, composite images for a 10 day period were generated by using a series of advanced algorithms (Luo et al., 2008). The 10-day composites of B1-B7 reflectance were then used to retrieve spatially continuous spectral albedo by using a combined land/snow BRDF (Bi-directional Reflectance Distribution Function) model. In that method, the modified RossThick-LiSparse BRDF model (Maignan et al., 2004) for land and Kokhanovsky and Zege’s model (2004) for snow are linearly combined for mixed surface conditions. They are weighted by snow fraction (0.0 ~ 1.0). The seven spectral albedo were then converted into the shortwave broadband surface albedo using the empirical MODIS polynomial conversion equation of Liang et al. (1999). The data product is in LCC (Lambert Conformal Conic) projection with a 250m pixel resolution. There are 36 albedo images per year. A dataset representing the pixel state (e.g. cloud/shadow, snow/ice, water, land, et al.) was also generated for each 10-day corresponding to the surface albedo product. References: Kokhanovsky, A. A. and Zege, E. P., 2004, Scattering Optics of Snow, Applied Optics, 43, 1589-1602, doi:10.1364/AO.43.001589, 20. Liang, S., Strahler, A.H., Walthall, C., 1999. Retrieval of land surface albedo from satellite observations: a simulation study. J. Appl. Meteorol. 38, 712–725. Luo, Y., Trishchenko, A.P., Khlopenkov, K.V., 2008. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 112, 4167–4185. Maignan, F., F.M. Bréon and R. Lacaze, 2004, Bidirectional reflectance of Earth targets : evaluation of analytical models using a large set of spaceborne measurements with emphasis with the hot spot, Remote Sens. Environ., 90, 210-220.
-
Each pixel value corresponds to the difference (anomaly) between the mean “Best-Quality” Max-NDVI of the week specified (e.g. Week 18, 2000-2014) and the “Best-Quality” Max-NDVI of the same week in a specific year (e.g. Week 18, 2015). Max-NDVI anomalies < 0 indicate where weekly Max-NDVI is lower than normal. Anomalies > 0 indicate where weekly Max-NDVI is higher than normal. Anomalies close to 0 indicate where weekly Max-NDVI is similar to normal.
Arctic SDI catalogue