Topic
 

imageryBaseMapsEarthCover

422 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 422
  • Categories  

    Each pixel value corresponds to the mean historical “Best-quality” Max-NDVI value for a given week, as calculated from the previous 20 years in the MODIS historical record (i.e. does not include data from the current year). These data are also often referred to as “weekly baselines” or “weekly normals”.

  • Categories  

    Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors were used to generate the circa 2010 Mosaic of Canada at 30 m spatial resolution. All scenes were processed to Standard Terrain Correction Level 1T by the United States Geological Survey (USGS). Further processing performed by the Canada Centre for Remote Sensing included conversion of sensor measurements to top of atmosphere reflectance, cloud and cloud shadow detection, re-projection, selection of best measurements, mosaic generation ,noise removal and quality control. To provide a clear sky measurement for each location in Canada, data from the years 2009, 2010, and 2011 were used, but 2010 was preferentially selected. Bands 3 (0.63-0.69 µm), 4 (0.76-0.90 µm), 5 (1.55-1.75 µm), and 7 (2.08-2.35 µm) are provided in this version as significant atmosphere effects strongly limit the quality of the blue (0.45-0.52 µm) and green (0.52-0.60 µm) bands. Multi-criteria compositing was used for the selection of the most representative pixel. For ETM+ onboard Landsat 7 a scan line malfunction caused missing lines of data in all scenes collected after May 2003. Atmosphere and target variability between scenes cause these lines to have significant radiometric differences in some cases. A Fourier transformation approach was applied to correct this occurrence. This mosaic was developed for land cover and biophysical mapping applications across Canada. Other applications of these data are also possible, but should consider the temporal and spectral limitations of the product. Research to enhance the spatial, spectral and temporal aspects are in development for future versions of moderate resolution products from historical Landsat sensors, Landsat 8, and Sentinel 2 data.

  • Categories  

    The MODIS surface albedo dataset was produced by the Canada Center for Remote Sensing (CCRS), Natural Resources Canada. The dataset represents the solar shortwave broadband surface albedo and it is at a 10-day interval covering the entire Canadian landmass as well as northern USA, Alaska, and the Greenland. The dataset was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA satellite which provides a global coverage every 1-2 days in 36 spectral bands ranging from visible to infrared and to thermal wavelengths between 405 and 14,385 nm, and was available since 2000. For the estimation of surface albedo, the first seven spectral bands of B1 to B7 ranging from 459 nm to 2155 nm were used. B1 and B2 have a 250 meter resolution and B3 to B7 have a 500 meter resolution. A downscaling method using a regression and normalization scheme was employed to downscale the bands B3 to B7 to 250 meter resolution while preserving radiometric properties of the original data. To obtain clear-sky observations from MODIS, composite images for a 10 day period were generated by using a series of advanced algorithms (Luo et al., 2008). The 10-day composites of B1-B7 reflectance were then used to retrieve spatially continuous spectral albedo by using a combined land/snow BRDF (Bi-directional Reflectance Distribution Function) model. In that method, the modified RossThick-LiSparse BRDF model (Maignan et al., 2004) for land and Kokhanovsky and Zege’s model (2004) for snow are linearly combined for mixed surface conditions. They are weighted by snow fraction (0.0 ~ 1.0). The seven spectral albedo were then converted into the shortwave broadband surface albedo using the empirical MODIS polynomial conversion equation of Liang et al. (1999). The data product is in LCC (Lambert Conformal Conic) projection with a 250m pixel resolution. There are 36 albedo images per year. A dataset representing the pixel state (e.g. cloud/shadow, snow/ice, water, land, et al.) was also generated for each 10-day corresponding to the surface albedo product. References: Kokhanovsky, A. A. and Zege, E. P., 2004, Scattering Optics of Snow, Applied Optics, 43, 1589-1602, doi:10.1364/AO.43.001589, 20. Liang, S., Strahler, A.H., Walthall, C., 1999. Retrieval of land surface albedo from satellite observations: a simulation study. J. Appl. Meteorol. 38, 712–725. Luo, Y., Trishchenko, A.P., Khlopenkov, K.V., 2008. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 112, 4167–4185. Maignan, F., F.M. Bréon and R. Lacaze, 2004, Bidirectional reflectance of Earth targets : evaluation of analytical models using a large set of spaceborne measurements with emphasis with the hot spot, Remote Sens. Environ., 90, 210-220.

  • Categories  

    The Canadian long term satellite data record (LTDR) derived from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) data was produced by the Canada Center for Remote Sensing (CCRS). Processing included: geolocation, calibration, and compositing using Earth Observation Data Manager (Latifovic et al. 2005), cloud screening (Khlopenkov and Trishchenko, 2006), BRDF correction (Latifovic et. al., 2003), atmosphere and other corrections as described in Cihlar et. al. (2004). For temporal analysis of vegetation cross-sensor correction of Latifovic et al. (2012) is advised. Data collected by the AVHRR instrument on board the National Oceanic and Atmospheric Administration (NOAA) 9,11,14,16,17,18 and 19 satellites were used to generate Canada-wide 1-km 10-day AVHRR composites. Data are available starting in 1985. It is important to note that there are three types of AVHRR sensors: (i) AVHRR-1 flown onboard TIROS-N, NOAA-6, NOAA-8, and NOAA-10; (ii) AVHRR-2 flown onboard NOAA-7, NOAA-9, NOAA-11, NOAA-12, and NOAA-14; and (iii) AVHRR-3 currently operational onboard NOAA-15, NOAA-16, NOAA-17, NOAA-18 and NOAA-19. The AVHRR-1 has four channels, AVHRR-2 has five channels and the AVHRR-3 has six channels, although only five channels of AVHRR-3 can be operational at any one time. As such, channels 3A (1.6 m) and 3B (3.7 m) work interchangeably. The processing procedure was designed to minimize artefacts in AVHRR composite images. There are thirty six 10-day image composites per year. The following three processing levels are provided: P1) top of atmosphere reflectance and brightness temperature, P2) reflectance at surface and surface temperature and P3) reflectance at surface normalized to a common viewing geometry (BRDF normalization). The processing level P1 and P2 are provided for all 36 composites while level P3 is provided for 21 composites from April – October.

  • Categories  

    Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistrated. For this dataset, the spatial resolutions are: 100 cm for the year 1947 and 50 cm for the year 1967. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html

  • Categories  

    Each pixel value corresponds to the difference (anomaly) between the mean “Best-Quality” Max-NDVI of the week specified (e.g. Week 18, 2000-2014) and the “Best-Quality” Max-NDVI of the same week in a specific year (e.g. Week 18, 2015). Max-NDVI anomalies < 0 indicate where weekly Max-NDVI is lower than normal. Anomalies > 0 indicate where weekly Max-NDVI is higher than normal. Anomalies close to 0 indicate where weekly Max-NDVI is similar to normal.

  • Categories  

    Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) files for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistered. For this dataset, the spatial resolutions vary from 150 cm to 200 cm. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html

  • Categories  

    This collection is a legacy product that is no longer supported. It may not meet current government standards. Land Cover information is the result of vectorization of raster thematic data originating from classified Landsat 5 and Landsat 7 ortho-images, for agricultural and forest areas of Canada, and for Northern Territories. The forest cover was produced by the Earth Observation for Sustainable Development (EOSD) project, an initiative of the Canadian Forest Service (CFS) with the collaboration of the Canadian Space Agency (CSA) and in partnership with the provincial and territorial governments. The agricultural coverage is produced by the National Land and Water Information Service (NLWIS) of Agriculture and Agri-Food Canada (AAFC). Northern Territories land cover was realized by the Canadian Centre of Remote Sensing (CCRS). Land Cover data are classified according to a harmonized legend build from the partner's legends. This legend is principally based on the legend described in following publication: EOSD publication: EOSD Land Cover Classification Legend Report, on which CFS and AAFC collaborated. Some classes related to Northern environments where added in order to meet the interpretation of the Northern land cover classification experts. Initially, Land Cover vector data are closest as possible to the source (original raster data). Slight differences can occur because the raster data goes through a data portrayal before being vectorized in order to enhance visual representation such as minimum size, smoothness of polygons and geometry.

  • Categories  

    Polygons containing the date of capture of the Landsat images used to create the first version of the Baseline Thematic Mapping v1 (BTM1). This spatial view is only meaningful in conjunction with the satellite images or the BTM data derived from the satellite images. The images were captured from 1990 to 1997

  • Categories  

    The RADARSAT Constellation is the evolution of the RADARSAT Program with the objective of ensuring data continuity, improved operational use of Synthetic Aperture Radar (SAR) and improved system reliability. The three-satellite configuration provides daily revisits of Canada's vast territory and maritime approaches, as well as daily access to 90% of the world's surface. RCM is tasked solely by the Government of Canada, to acquire data, first and foremost in support of Government of Canada services and needs. RCM data and services contributes to ensuring the safety and security of Canadians; monitoring and protecting the environment; monitoring of climate change; managing Canada’s natural resources; and stimulating innovation, research and economic development. In addition to these core user areas, there are expected to be a wide range of ad hoc uses of RADARSAT Constellation data in many different applications within the public and private sectors, both in Canada and internationally. The current data set reflects the acquisition plans that are designed to meet the RCM SAR imaging demands of the Government of Canada. These are being made available publicly in advance of the acquisitions. To meet the data needs of the Government of Canada, acquisitions may be changed without notice. After their acquisition and processing, the RCM image products listed in the current data set, will be delivered to the Earth Observation Data Management System - EODMS (https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html) portal of Natural Resources Canada. Users can register to the EODMS portal as public users to retrieve the RCM image products. For those requiring a greater access to RCM imagery consisting of product types or spatial resolutions not available to public users: you may apply to upgrade your public account to an ‘RCM external vetted entity’ EODMS user type account. For more information on this process, please contact the Canadian Space Agency using the information available at the following link : https://www.asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/how-to-become-a-user.asp Publication frequency : I. Future acquisition plans are published every two weeks for a two-week window that starts two weeks from the publication date. As an example, acquisition plan published on April 1st covers acquisitions from April 14 to 27. The next plan is published on April 14th and covers from April 28 to May 11. II. Past acquisitions plans are published monthly and covers a period of one month from the first to the last day As an example, acquisition plan published on April 1st covers acquisition made between the March 1 and March 31. The next plan covers the month of April.