Topic
 

imageryBaseMapsEarthCover

436 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 436
  • Categories  

    Landcover dataset created for the agricultural portion of Saskatchewan. Download: here A satellite imagery classification of Southern Saskatchewan based mainly on 1994 Landsat5 imagery. Developed by the Saskatchewan Research Council after 1997. Background: A group of Provincial and Federal Agencies formed a partnership in March of 1997 to share the cost of obtaining satellite imagery and interpreting this imagery to create a landcover dataset for the agricultural portion of Saskatchewan. The partnership included Saskatchewan Research Council (SRC), Saskatchewan Agriculture and Food (SAF), Saskatchewan Crop Insurance (SCI), Saskatchewan Property Management Corporation (SPMC), Environment Canada, the Prairie Farm Rehabilitation Administration (PFRA) and Saskatchewan Environment Resource Management (SERM). The University of Regina was also involved as an 'in kind' partner providing research services in the area of land cover classifications, accuracy assessment and data conversions. The Partnership Agreement required SRC (partner doing the bulk of data processing) to provide digital files for each of 328 1:50,000 NTS map sheets. The digital files included not only raw imagery, but also one file for each map sheet where the imagery was classified into 24 landcover types. The accuracy of this classification was to be demonstrated by SRC to be at least 90 per cent correct. In addition to the data processing done by SRC, SPMC provided the necessary positional control data (road intersection coordinates) and verified the positional accuracy of the final product. The other partners provided feedback to SRC on classification errors, which improved the overall accuracy of the final product. Classification Value No Data 0 Crop Land 1 Hay Crops (Forage) 2 Native Dominant Grass Lands 3 Tall Shrubs 4 Pasture (Seeded Grass Lands) 5 Hardwoods (Open Canopy) 6 Hardwoods (Closed Canopy) 7 Jack Pine (Closed Canopy) 8 Jack Pine (Open Canopy) 9 Spruce (Close Canopy) 10 Treed Rock 13 Recent Burns 14 Revegetating Burns 15 Cutovers 16 Water Bodies 17 Marsh 18 Herbaceous Fen 19 Mud/Sand/Saline 20 Shrub Fen (Treed Swamp) 21 Treed Bog 22 Open Bog 23 Slopes 25 Slopes 26 0. No Data 1. Crop Land - All lands dedicated to the production of annual cereal, oil seed and other specialty crops, and typically cultivated on an annual basis.  2. Hay Crops (Forage) - Alfalfa and alfalfa/tame grass mixtures.  3. Native Dominant Grass Lands - Native dominant grasslands/may contain tame grasses and herbs.  4. Tall Shrubs - Communities containing both low and tall shrub, snowberry, saskatoon, chokecherry, buffaloberry, and willow.  5. Pasture (Seeded Grass Lands) - Grassland dominated by tame grass species.  6. Hardwoods (Open Canopy) - Corresponds to Provincial Forest Inventory: over 75% hardwoods; 10-30% crown closure.  7. Hardwoods (Closed Canopy) - Corresponds to Provincial Forest Inventory: over 75% hardwoods; 30-100% crown closure.  8. Jack Pine (Closed Canopy) - Similar to Provincial Forest Inventory: 75% or greater Jack Pine; 30-100% crown closure.  9. Jack Pine (Open Canopy) - Similar to Provincial Forest Inventory: 75% or greater Jack Pine; 10-30% crown closure.  10. Spruce (Close Canopy) - Similar to Provincial Forest Inventory: 75% or greater Black and White Spruce; 10-30% crown closure. 11. Spruce: Open Canopy - Similar to Provincial Forest Inventory: 75% or greater Black and White Spruce; 10-30% crown closure. 12. Mixed Woods - All softwood/hardwood mixtures.  13. Treed Rock - Areas of exposed bedrock with generally less then 10% tree cover. Dominant species are Jack Pine and Black Spruce.  14. Recent Burns - All areas that have been recently burned over by wildfires.  15. Revegetating Burns - Burns with a regrowth of commercial timber generally 1-5 metres in height.  16. Cutovers - Areas where commercial timber has been completely or partially removed by logging operations.  17. Water Bodies - Consists of all open water - lakes, rivers, streams, ponds, and lagoons.  18. Marsh - Dominated by sedge and wetland grasses.  19. Herbaceous Fen - Fens dominated by herbaceous species.  20. Mud/Sand/Saline  21. Shrub Fen (Treed Swamp) - Fens dominated by shrubby species.  22. Treed Bog - Peat-covered or peat-filled depressions with a high water table and a surface carpet of moss, chiefly sphagnum. The bogs have 25% or more canopy by trees greater than one metre tall. The primary species is black spruce.  23. Open Bog - Peat-covered or peat-filled depressions with a high water table and a surface carpet of moss, chiefly sphagnum. 24. Farmstead - Farmstead types, towns, cities, Exposed areas with little or no vegetation or Cloud coverage.  25. Slopes - Steep Valley slopes or hill slopes where aspect and slope prohibit classification. 26. Slopes - Steep Valley slopes or hill slopes where aspect and slope prohibit classification.

  • Categories  

    Land cover classification image for the Aspen Parkland ecoregion of Saskatchewan with a spatial resolution of 10m. The goal of this land cover classification was to distinguish native from tame grasslands. The classification was based on Sentinel-1 and Sentinel-2 imagery using machine learning analysis in the Google Earth Engine platform. The classification was conducted on imagery acquired in 2022, and the classification model was built with field data collected in 2020 - 2022. There are eight classes in total: native grassland, tame grassland, mixed/altered grassland, cropland, shrubs, trees, water, and urban area. Download: here The Prairie Landscape Inventory (PLI) aims to develop improved methods of assessing land cover and land use for conservation. Native grassland has historically been one of the hardest to map at-risk ecosystems because of the challenges in distinguishing native grassland from tame grassland land cover using remotely sensed imagery. This classification distinguishes native grassland from tame grassland and will provide valuable information for habitat suitability for native grassland species, identifying high biodiversity potential and invasion risk potential. The classification map has eight (8) classes:  1. Cropland This class represents all cultivated areas with crop commodities, including corn, pulse, soybeans, canola, grains, and summer-fallow. 2. Native grassland This class represents the native grassland areas that are composed of at least 75% native grass, sedge and forb species, such as the needle grasses and wheatgrasses along with June grass and blue grama grass. Unbroken grassland that is invaded by species like Kentucky bluegrass, crested wheatgrass or smooth brome, such that native cover is less than 75%, is not considered native for the purpose of this project.  3. Mixed/altered grassland This class represents a grassland with a mix of less than 75% native grass, sedge and forb species or less than 75% tame species. These are grassland areas that do not fit into either of the native or tame grassland definitions.  4. Tame grassland This class represents the tame grassland areas that are composed of at least 75% seeded or planted species with introduced grasses and forb species such as crested wheatgrass, smooth brome, Kentucky bluegrass, alfalfa, and sweet clover. 5. Water This class represents permanent water locations such as lakes and rivers. 6. Shrubs This class represents the sites dominated by woody vegetation of relatively low height (generally +/-2 meters) with shrub canopy typically >20% of total vegetation cover. 7. Trees This class represents the coniferous/deciduous trees, mixed-wood area, and other trees >2 meters height with tree canopy typically >20% of total vegetation cover. 9. Urban area This class represents both urban municipalities and buffered roads. Urban municipalities was used to mask the urban/developed area class of the Annual Crop Inventory 2021 (Agriculture Agri-Food Canada).   Colour Classes: Value Label Red Green Blue 1 Cropland 255 255 190 2 Native grassland 168 168 0 3 Mixed/altered grassland 199 215 158 4 Tame grassland 245 202 122 5 Water 190 232 255 6 Shrubs 205 102 153 7 Trees 66 128 53 9 Urban area 128 128 128 Accuracy metrics This model has an overall accuracy of 73 per cent. The table below summarizes the user’s accuracy, producer’s accuracy, and F1-score of the model on the validation dataset. Class User’s accuracy (%) Producer’s accuracy (%) F1-score Cropland 91.2 94.5 0.93 Native grassland 74.8 73.1 0.74 Mixed grassland 44.7 44.1 0.44 Tame grassland 67.9 72.8 0.70 Water 94.8 91.3 0.93 Shrubs 61.2 51.1 0.56 Trees 89.7 94.6 0.92

  • Categories  

    This publication contains vector data (shapefile) of the post-harvest forest residues in Canada for the bioenergy/bioproducts sector in oven-dry tonnes per year (ODT/yr) over the next 20 years. The maps were produced using different remote sensing products. We used forest attribute data at 250 m MODIS for the years 2001 and 2011 (Beaudoin et al. 2014 and 2018) combined with forest cover changes for the years 1985 to 2015 contained in the CanLaD dataset at 30 m Landsat(Guindon et al. 2017 and 2018). Results of available biomass (in the form of harvest residues) were reported at the 10 km x 10 km scale, while the map of mature forests in Canada was prepared at the forest management unit (FMU) level. Briefly, our methodology consisted of three steps: 1- create a map of mature forests for the year 2011, based on 2001-2010 average cut volumes within FMUs; 2- develop an annual cut rate from the area harvested within FMUs from 1985 to 2015 and; 3- define the amount of biomass in the form of forest residues available for the bioenergy sector. The biomass of branches and leaves of forest attribute data was used as a proxy to define the biomass of forest residues available. Nationally, the average biomass of forest residues available after harvest is 26 ± 16 ODT/ha, while the total annual availability for all managed forests in Canada was 21 million ODT/yr. A scientific article gives additional details on the methodology: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Forecasting the spatial distribution of logging residues across the Canadian managed forest. Can. J. For. Res. 48: http://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0080 Reference for this dataset: Barrette J, Paré D, Manka F, Guindon L, Bernier P, Titus B. 2018. Maps forecasting the availability of logging residues in Canada. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/5072c495-240c-42a3-ad55-c942ab37c32a

  • Categories  

    Index Grid for NTS 1:250,000 scale maps

  • Categories  

    The 1 cm resolution vegetation digital height model was extracted using a bare earth model and digital surface model (DSM) derived from unmanned aerial vehicle (UAV) imagery acquired from a single day survey on July 28th 2016, in Cambridge Bay, Nunavut. The mapping product covers 525m2 and was produced by Canada Centre for Remote Sensing /Canada Centre for Mapping and Earth Observation. The UAV survey was completed in collaboration with the Canadian High Arctic Research Station (CHARS) for northern vegetation monitoring research. For more information, refer to our current Arctic vegetation research: Fraser et al; "UAV photogrammetry for mapping vegetation in the low-Arctic" Arctic Science, 2016, 2(3): 79-102. http://www.nrcresearchpress.com/doi/abs/10.1139/AS-2016-0008

  • Categories  

    CHS offers 500-metre bathymetric gridded data for users interested in the topography of the seafloor. This data provides seafloor depth in metres and is accessible for download as predefined areas.

  • Categories  

    The AAFC Infrastructure Flood Mapping in Saskatchewan 20 centimeter colour orthophotos is a collection of georeferenced color digital orthophotos with 20 cm pixel size. The imagery was delivered in GeoTIF and ECW formats. The TIF and ECW mosaics were delivered in the same 1 km x 1 km tiles as the LiDAR data, and complete mosaics for each area in MrSID format were also provided. The digital photos were orthorectified using the ground model created from the DTM Key Points. With orthorectification, only features on the surface of the ground are correctly positioned in the orthophotos. Objects above the surface of the ground, such as building rooftops and trees, may contain horizontal displacement due to image parallax experienced when the photos were captured. This is sometimes apparent along the cut lines between photos. For positioning of above-ground structures it is recommended to use the LiDAR point clouds for accurate horizontal placement.

  • Categories  

    Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistrated. For this dataset, the spatial resolutions are: 75 cm for the year 1960 and 50 cm for the year 1974. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived product managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html

  • Categories  

    Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.

  • Categories  

    GeoAI are buildings, hydrography, forests, and roads automatically extracted using Deep Learning models applied to a source dataset, typically aerial or satellite images. The primary aim of GeoAI is to increase Canada's availability of high-resolution foundational geospatial data for both spatial and temporal coverage. ‌ The infrastructure and expertise put in place by NRCan enables a rapid, efficient, and scalable data creation process through the use of leading-edge technology and Artificial Intelligence models. Published datasets for a given source can be revisited at a later date as more accurate models are developed and put into production. For now, only static files are available, but as the series develops, new products and services will be added.