Geoscientific information
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The compilation represents publicly available reports of geochronological information for Canada. This includes federal, provincial and territorial government publications and reports, university theses, books and journals. Current coverage is limited to those areas that have been the target of recent past compilation efforts, with other areas and updates being included as they become ready. Users should be aware that the compilation may not include all available data for a given area. Every effort is made to report the ages without reinterpreting the original authors' intent. However, care has also been taken to highlight the salient features of the data by which the end-user can make initial judgment on the data robustness. Users are cautioned that because of space limitations and the necessary summarization of often complex datasets, that the original publication should be consulted to verify age interpretations and their rationale. Data may be extracted by the user in tab-delimited text format.
-
Forest Lorey's Height 2015 Lorey's mean height. Average height of trees weighted by their basal area (m). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011
-
The maximum temperature layer shows the modeled maximum temperature [°C] at a height of 100 m above ground level, at each grid point, over the three year period from January 1, 2008 to December 31, 2010. Values are presented in bins with ranges of 1.5 °C each. Further details including data for individual years can be obtained by clicking on the dot representing the grid point location.
-
Forest Elevation(Ht) Stddev 2015 Standard deviation of height of lidar first returns (m). Represents the variability in canopy heights. Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011
-
Wildfire Year/dNBR/Mask 1985-2015 Wildfire change magnitude 85-15. Spectral change magnitude for wildfires that occurred from 1985 and 2015. The wildfire change magnitude included in this product is expressed via differenced Normalized Burn Ratio (dNBR), computed as the variation between the spectral values before and after the change event. This dataset is composed of three layers: (1) binary wildfire mask, (2) year of greatest wildfire disturbance, and (3) differenced Normalized Burn Ratio (dNBR) transformed for data storage efficiency to the range 0-200. The actual dNBR value is derived as follows: dNBR = value / 100. Higher dNBR values are related to higher burn severity. The information outcomes represent 30 years of wildfires in Canada's forests, derived from a single, consistent spatially-explicit data source in a fully automated manner. Time series of Landsat data with 30-m spatial resolution were used to characterize national trends in stand replacing forest disturbances caused by wildfire for the period 1985-2015 for Canada's 650 million hectare forested ecosystems. When using this data, please cite as: Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, G.W. Hobart, L.B. Campbell, 2016. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth 9(11), 1035-1054. (Hermosilla et al. 2016). See references below for an overview on the data processing, metric calculation, change attribution and time series change detection methods applied, as well as information on independent accuracy assessment of the data. Hermosilla, T., Wulder, M. A., White, J. C., Coops, N.C., Hobart, G.W., 2015. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment 158, 220-234. (Hermosilla et al. 2015a). Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2015. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment 170, 121-132. (Hermosilla et al. 2015b). Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011
-
The Agricultural Region of Alberta Soil Inventory Database (AGRASID3.0) Detailed Soil Survey dataset series at a scale of 1:100 000 consists of geo-referenced soil polygons with linkages to attribute data found in the associated Component File (CMP), Soil Names File (SNF) and Soil Layer File (SLF). Together, these datasets describe the spatial distribution of soils and associated landscapes within the agricultural region of Alberta (an area of approximately 26M ha.)
-
The Manitoba Detailed Soil Survey dataset series at a scale of 1:100 000 consists of geo-referenced soil polygons with linkages to attribute data found in the associated Component File (CMP), Soil Names File (SNF) and Soil Layer File (SLF). Together, these datasets describe the spatial distribution of soils and associated landscapes for nearly all agricultural areas in southern Manitoba, as well as some parts of northern and eastern Manitoba.
-
This dataset provides wall-to-wall maps of forest structure across Canada's 650 million hectare forested ecosystems for the year 2022, generated at a spatial resolution of 30 m. Structure estimates include key attributes such as canopy height, canopy cover, and aboveground biomass, derived using a combination of airborne lidar and Landsat-based spectral composites. Structure models were trained using the - lidar-plot framework - (Wulder et al. 2012), which integrates co-located airborne lidar data and ground plot measurements with Landsat time-series composites (Hermosilla et al. 2016). A Nearest Neighbour imputation approach was applied to estimate structural attributes across the full extent of Canada's forested area. These nationally consistent products are intended to support strategic-level forest monitoring and assessment and are not designed for operational forest management. For further details on the methods, accuracy assessment, and source data, see Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714. https://doi.org/10.1016/j.rse.2018.07.024 (Matasci et al. 2018)
-
This dataset provides wall-to-wall maps of forest structure across Canada's 650 million hectare forested ecosystems for the year 2022, generated at a spatial resolution of 30 m. Structure estimates include key attributes such as canopy height, canopy cover, and aboveground biomass, derived using a combination of airborne lidar and Landsat-based spectral composites. Structure models were trained using the - lidar-plot framework - (Wulder et al. 2012), which integrates co-located airborne lidar data and ground plot measurements with Landsat time-series composites (Hermosilla et al. 2016). A Nearest Neighbour imputation approach was applied to estimate structural attributes across the full extent of Canada's forested area. These nationally consistent products are intended to support strategic-level forest monitoring and assessment and are not designed for operational forest management. For further details on the methods, accuracy assessment, and source data, see Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714. https://doi.org/10.1016/j.rse.2018.07.024 (Matasci et al. 2018)
-
This dataset provides wall-to-wall maps of forest structure across Canada's 650 million hectare forested ecosystems for the year 2022, generated at a spatial resolution of 30 m. Structure estimates include key attributes such as canopy height, canopy cover, and aboveground biomass, derived using a combination of airborne lidar and Landsat-based spectral composites. Structure models were trained using the - lidar-plot framework - (Wulder et al. 2012), which integrates co-located airborne lidar data and ground plot measurements with Landsat time-series composites (Hermosilla et al. 2016). A Nearest Neighbour imputation approach was applied to estimate structural attributes across the full extent of Canada's forested area. These nationally consistent products are intended to support strategic-level forest monitoring and assessment and are not designed for operational forest management. For further details on the methods, accuracy assessment, and source data, see Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714. https://doi.org/10.1016/j.rse.2018.07.024 (Matasci et al. 2018)
Arctic SDI catalogue