Keyword

Geoscientific information

3784 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 3784
  • The compilation represents publicly available reports of geochronological information for Canada. This includes federal, provincial and territorial government publications and reports, university theses, books and journals. Current coverage is limited to those areas that have been the target of recent past compilation efforts, with other areas and updates being included as they become ready. Users should be aware that the compilation may not include all available data for a given area. Every effort is made to report the ages without reinterpreting the original authors' intent. However, care has also been taken to highlight the salient features of the data by which the end-user can make initial judgment on the data robustness. Users are cautioned that because of space limitations and the necessary summarization of often complex datasets, that the original publication should be consulted to verify age interpretations and their rationale. Data may be extracted by the user in tab-delimited text format.

  • Categories  

    14 Class - Canadian Ecological Domain Classification from Satellite Data. Satellite derived data including 1) topography, 2) landscape productivity based on photosynthetic activity, and 3) land cover were used as inputs to create an environmental regionalization of the over 10 million km2 of Canada’s terrestrial land base. The outcomes of this clustering consists of three main outputs. An initial clustering of 100 classes was generated using a two-stage multivariate classification process. Next, an agglomerative hierarchy using a log-likelihood distance measure was applied to create a 40 and then a 14 class regionalization, aimed to meaningfully group ecologically similar components of Canada's terrestrial landscape. For more information (including a graphical illustration of the cluster hierarchy) and to cite this data please use: Coops, N.C., Wulder, M.A., Iwanicka, D. 2009. An environmental domain classification of Canada using earth observation data for biodiversity assessment. Ecological Informatics, Vol. 4, No. 1, Pp. 8-22, DOI: https://doi.org/10.1016/j.ecoinf.2008.09.005. ( Coops et al. 2009).

  • Wildfire Year/dNBR/Mask 1985-2015 Wildfire change magnitude 85-15. Spectral change magnitude for wildfires that occurred from 1985 and 2015. The wildfire change magnitude included in this product is expressed via differenced Normalized Burn Ratio (dNBR), computed as the variation between the spectral values before and after the change event. This dataset is composed of three layers: (1) binary wildfire mask, (2) year of greatest wildfire disturbance, and (3) differenced Normalized Burn Ratio (dNBR) transformed for data storage efficiency to the range 0-200. The actual dNBR value is derived as follows: dNBR = value / 100. Higher dNBR values are related to higher burn severity. The information outcomes represent 30 years of wildfires in Canada's forests, derived from a single, consistent spatially-explicit data source in a fully automated manner. Time series of Landsat data with 30-m spatial resolution were used to characterize national trends in stand replacing forest disturbances caused by wildfire for the period 1985-2015 for Canada's 650 million hectare forested ecosystems. When using this data, please cite as: Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, G.W. Hobart, L.B. Campbell, 2016. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth 9(11), 1035-1054. (Hermosilla et al. 2016). See references below for an overview on the data processing, metric calculation, change attribution and time series change detection methods applied, as well as information on independent accuracy assessment of the data. Hermosilla, T., Wulder, M. A., White, J. C., Coops, N.C., Hobart, G.W., 2015. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment 158, 220-234. (Hermosilla et al. 2015a). Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2015. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment 170, 121-132. (Hermosilla et al. 2015b). Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • Categories  

    The “Soil Landscapes of Canada V.2.2/V.3.1 - Soil Order” displays the highest (most general) level of soil classification. Within the Canadian System of Soil Classification there are ten recognized soil orders (Soil Classification Working Group 1998). This system is hierarchical (from general to specific). Soil orders are further subdivided to great groups, subgroups, families, and series.

  • Forest Lorey's Height 2015 Lorey's mean height. Average height of trees weighted by their basal area (m). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • The wetland year count data included in this product is national in scope (entire forested ecosystem) and represents a wall to wall wetland characterization for 1984-2016 (Wulder et al. 2018). This product was generated using both annual gap free composite reflectance images and annual forest change maps following the Virtual Land Cover Engine (VLCE) process (see Hermosilla et al. 2018), over the 650 million ha forested ecosystems of Canada. Elements of the VLCE classification approach are inclusion of disturbance information in the processes as well as ensuring class transitions over time are logical. Further, a Hidden Markov Model is implemented to assess individual year class likelihoods to reduce variability and possible noise in year-on-year class assignments (for instances when class likelihoods are similar). The values can range from 0 to 33 denoting the number of years between 1984 and 2016 that a pixel was classified as wetland or wetland-treed in the VLCE data cube. For an overview on the data, image processing, and time series change detection methods applied, as well as information on independent accuracy assessment of the data, see Hermosilla et al. (2016; http://www.tandfonline.com/doi/full/10.1080/17538947.2016.1187673). A detailed description of the VLCE process and the subsequently generated land cover product, including an accuracy assessment, please see Hermosilla et al. (2018). The focused wetland analyses can be found described in Wulder et al (2018). Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • Categories  

    The “Thematic Soil Maps of Saskatchewan” is a revised and condensed version of the Saskatchewan Detailed Soils Database produced by CANSIS. It contains data relating to the soils slope, drainage, agricultural capability, erosion potential, and surface texture.

  • Categories  

    40 Class - Canadian Ecological Domain Classification from Satellite Data. Satellite derived data including 1) topography, 2) landscape productivity based on photosynthetic activity, and 3) land cover were used as inputs to create an environmental regionalization of the over 10 million km2 of Canada’s terrestrial land base. The outcomes of this clustering consists of three main outputs. An initial clustering of 100 classes was generated using a two-stage multivariate classification process. Next, an agglomerative hierarchy using a log-likelihood distance measure was applied to create a 40 and then a 14 class regionalization, aimed to meaningfully group ecologically similar components of Canada's terrestrial landscape. For more information (including a graphical illustration of the cluster hierarchy) and to cite this data please use: Coops, N.C., Wulder, M.A., Iwanicka, D. 2009. An environmental domain classification of Canada using earth observation data for biodiversity assessment. Ecological Informatics, Vol. 4, No. 1, Pp. 8-22, DOI: https://doi.org/10.1016/j.ecoinf.2008.09.005. ( Coops et al. 2009).

  • Categories  

    The "Canadian Database of Geochemical Surveys" has two long-term goals. Firstly, it aims to catalogue all of the regional geochemical surveys that have been carried out across Canada, beginning in the 1950s. Secondly, it aims to make the raw data from those surveys available in a standardised format. Over 1,500 surveys have been catalogued. Of these, the raw data for over 300 have been converted to a standardised format. The catalogue can be searched at https:\\geochem.nrcan.gc.ca

  • Categories  

    Dominant Species Map 2015 The data represent dominant tree species for British Columbia forests in 2015, are based upon Landsat data and modeling, with results mapped at 30 m spatial resolution. The map was generated with the Random Forests classifier that used predictor variables derived from Landsat time series including surface reflectance, land cover, forest disturbance, and forest structure, and ancillary variables describing the topography and position. Training and validation samples were derived from the Vegetation Resources Inventory (VRI), from a pool of polygons with homogeneous internal conditions and with low discrepancies with the remotely sensed predictions. Local models were applied over 100x100 km tiles that considered training samples from the 5x5 neighbouring tiles to avoid edge effects. An overall accuracy of 72% was found for the species which occupy 80% of the forested areas. Satellite data and modeling have demonstrated the capacity for up-to-date, wall-to-wall, forest attribute maps at sub-stand level for British Columbia, Canada. BC Species Likelihood 2015 The tree species class membership likelihood distribution data included in this product focused on the province of British Columbia, based upon Landsat data and modeling, with results mapped at 30 m spatial resolution. The data represent tree species class membership likelihood in 2015. The map was generated with the Random Forests classifier that used predictor variables derived from Landsat time series including surface reflectance, land cover, forest disturbance, and forest structure, and ancillary variables describing the topography and position. Training and validation samples were derived from the Vegetation Resources Inventory (VRI) selecting from a stratified pool of polygons with homogeneous internal conditions and with low discrepancies when related to remotely sensed information. Local models were applied over 100x100 km tiles that, to avoid edge effects, considered training samples from the 5x5 neighbouring tiles. An overall accuracy of 72% was found for the species which occupy 80% of the forested areas. As an element of the mapping process, we also obtain the votes received for each class by the Random Forest models. The votes can be understood as analogous to class membership likelihoods, providing enriched information on land cover class uncertainty for use in modeling. Tree species class membership likelihoods lower than 5% have been masked and converted to zero. When using this data, please cite as: Shang, C., Coops, N.C., Wulder, M.A., White, J.C., Hermosilla, T., 2020. Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. International Journal of Applied Earth Observation and Geoinformation 84, 101956. DOI: 10.1016/j.jag.2019.101956 ( Shang et al. 2020).