Topic
 

oceans

1039 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1039
  • Categories  

    This visualization product displays plastic bags density per trawl. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of seafloor litter collected by international fish-trawl surveys have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols (OSPAR and MEDITS protocols) and reference lists used on a European scale. Moreover, within the same protocol, different gear types are deployed during bottom trawl surveys. In cases where the wingspread and/or number of items were/was unknown, it was not possible to use the data because these fields are needed to calculate the density. Data collected before 2011 are concerned by this filter. When the distance reported in the data was null, it was calculated from: - the ground speed and the haul duration using the following formula: Distance (km) = Haul duration (h) * Ground speed (km/h); - the trawl coordinates if the ground speed and the haul duration were not filled in. The swept area was calculated from the wingspread (which depends on the fishing gear type) and the distance trawled: Swept area (km²) = Distance (km) * Wingspread (km) Densities were calculated on each trawl and year using the following computation: Density of plastic bags (number of items per km²) = ∑Number of plastic bags related items / Swept area (km²) Percentiles 50, 75, 95 & 99 were calculated taking into account data for all years. The list of selected items for this product is attached to this metadata. Information on data processing and calculation is detailed in the attached methodology document. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

  • Categories  

    The Global Deterministic Wave Prediction System (GDWPS) produces wave forecasts out to 120 hours in the future using the third generation spectral wave forecast model WaveWatch III® (WW3). The model is forced by the 10 meters winds and the ice concentration from the Global Deterministic Prediction System (GDPS). The ice concentration is used by the model to attenuate wave growth in areas covered by 25% to 75% ice and to suppress it for concentration above 75%. Forecast elements include significant wave height, peak period and primary swell height, direction and period.

  • Categories  

    The Coastal Environmental Baseline Program is a multi-year Fisheries and Oceans Canada initiative designed to work with Indigenous and local communities and other key parties to collect coastal environmental data at six pilot sites across Canada (Port of Vancouver, Port of Prince Rupert, Lower St. Lawrence Estuary, Port of Saint John, Placentia Bay, and Iqaluit). The goal of the Program is to gather local information in these areas in effort to build a better understanding of marine ecological conditions. The Maritimes region has developed a physical oceanography program to align with the oceanographic interests and data needs of local communities and stakeholders, with the goal of sharing this information via open data. Starting in 2019, oceanographic parameters including temperature, salinity, depth, turbidity and currents have been continuously monitored at a series of locations covering a broad range of environments in the Port of Saint John and approaches vicinity, including the lower Saint John and Kennebecasis rivers, coastal fringe marshes and embayments, as well as the Musquash estuary Marine Protected Area (MPA). This dataset includes CTD data starting in 2019 and turbidity data from August 2020. Data collection methods range from bottom-mounted instruments in water depths of 10-50 meters, buoyant surface moorings, and hard-mounted instruments in intertidal zones. Intertidal data is interrupted during some low tide events, where the water level drops below the sensor, resulting in loss of functionality for periods up to 1-2 hours. Overall this dataset captures a dynamic balance between salt and fresh water on the highly tidal lower Saint John river, coastal seasonal dynamics in near-shore marine environments in the Musquash MPA, and the constant fluctuations of intertidal creeks and marshes. Update 2 - April 2025: included 2023-24 data Update 1 - Nov 2023: included 2022 data; removed daylight savings errors from 2019, 2020 and 2021; updated position for Evandale surface mooring.

  • Categories  

    This visualization product displays the plastic bags abundance of marine macro-litter (> 2.5cm) per beach per year from Marine Strategy Framework Directive (MSFD) monitoring surveys. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale. Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of MSFD surveys only (exclusion of other monitoring, cleaning and research operations); - Exclusion of beaches without coordinates; - Selection of plastic bags related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not exactly 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of plastic bags related items of the survey (normalized by 100 m) = Number of plastic bags related items of the survey x (100 / survey length) Then, this normalized number of plastic bags related items is summed to obtain the total normalized number of plastic bags related items for each survey. Finally, the median abundance of plastic bags related items for each beach and year is calculated from these normalized abundances of plastic bags related items per survey. Sometimes the survey length was null or equal to 0. Assuming that the MSFD protocol has been applied, the length has been set at 100m in these cases. Percentiles 50, 75, 95 & 99 have been calculated taking into account plastic bags related items from MSFD data for all years. More information is available in the attached documents. Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  • Categories  

    The shallow substrate bottom type model was created to support near shore habitat modelling. Data sources include both available observations of bottom type and environmental predictor layers including oceanographic layers, fetch, and bathymetry and its derivatives. Using weighted random forest classification from the ranger R package, the relationship between observed bottom type and predictor layers can be determined, allowing bottom type to be classified across the study areas. The predicted raster files are classified as follows: 1) Rock, 2) Mixed, 3) Sand, 4) Mud The categorical substrate model domains are restricted to the extent of the input bathymetry layers (see data sources) which is 5 km from the 50 m depth contour.

  • This collection holds the layers used for the "Map of Upper Intertidal shoreline segmentation with Shoreline Cleanup Assessment Technique (SCAT) classification", a WMS service maintained by ECCC. The segmentation covers shorelines for Northern Canada, the North coast of British Columbia, as well as Ontario, Quebec, and Atlantic regions.

  • Categories  

    The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video - Bouctouche. Published: November 2017. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/b4c83cd2-20f2-47d8-8614-08c1c44c9d8c

  • Categories  

    This layer details Important Areas (IAs) relevant to sponge reefs (Hexactinosida) in the Strait of Georgia (SOG) ecoregion. This data was mapped to inform the selection of marine Ecologically and Biologically Significant Areas (EBSA). Experts have indicated that these areas are relevant based upon their high ranking in one or more of three criteria (Uniqueness, Aggregation, and Fitness Consequences). The distribution of IAs within ecoregions is used in the designation of EBSAs. Canada’s Oceans Act provides the legislative framework for an integrated ecosystem approach to management in Canadian oceans, particularly in areas considered ecologically or biologically significant. DFO has developed general guidance for the identification of ecologically or biologically significant areas. The criteria for defining such areas include uniqueness, aggregation, fitness consequences, resilience, and naturalness. This science advisory process identifies proposed EBSAs in Canadian Pacific marine waters, specifically in the Strait of Georgia (SOG), along the west coast of Vancouver Island (WCVI, southern shelf ecoregion), and in the Pacific North Coast Integrated Management Area (PNCIMA, northern shelf ecoregion). Initial assessment of IA's in PNCIMA was carried out in September 2004 to March 2005 with spatial data collection coordinated by Cathryn Clarke. Subsequent efforts in WCVI and SOG were conducted in 2009, and may have used different scientific advisors, temporal extents, data, and assessment methods. WCVI and SOG IA assessment in some cases revisits data collected for PNCIMA, but should be treated as a separate effort. Other datasets in this series detail IAs for birds, cetaceans, fish, geographic features, invertebrates, and other vertebrates. Though data collection is considered complete, the emergence of significant new data may merit revisiting of IA's on a case by case basis.

  • Categories  

    This product displays for Fluoranthene, positions with values counts that have been measured per matrix for each year and are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for every available year.

  • Categories  

    This gridded product visualizes 1960 - 2014 water body dissolved oxygen concentration (umol/l) in the North Sea domain, for each season (winter: December – February; spring: March – May; summer: June – August; autumn: September – November). It is produced as a Diva 4D analysis, version 4.6.11: a reference field of all seasonal data between 1960-2014 was used; results were logit transformed to avoid negative/underestimated values in the interpolated results; error threshold masks L1 (0.3) and L2 (0.5) are included as well as the unmasked field. Every step of the time dimension corresponds to a 10-year moving average for each season. The depth dimension allows visualizing the gridded field at various depths.