Topic
 

oceans

1083 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1083
  • Categories  

    A towfish containing sidescan and video hardware was used to map eelgrass in two shallow northern New Brunswick estuaries. The sidescan and video data were useful in documenting suspected impacts of oyster aquaculture gear and eutrophication on eelgrass. With one boat and a crew of three, the mapping was accomplished at a rate of almost 10 km2 per day. That rate far exceeds what could be accomplished by a SCUBA based survey with the same crew. Moreover, the towfish survey applied with a complementary echosounder survey is potentially a more cost effective mapping method than satellite based remote sensing. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video - Shippagan 2007. Published: November 2019. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/6454594e-c8f9-41c4-801a-db125b8a8875

  • Categories  

    A novel towfish incorporating sidescan and video hardware was used to ground truth echosounder data for the nearshore of Halifax Harbour. The resulting sampling grid extended from the shoreline to a depth of 10 m, including Bedford Basin through the Inner Harbour to the Outer Harbour. Each of these three zones could be distinguished from the others based upon combinations of substrate type, benthic invertebrates, and macrophyte canopy. Bedford Basin had a relative lack of macrophytes and evidence of intense herbivory. The Inner Harbour was characterized by shoreline hardening due to anthropogenic activities. The Outer Harbour was the most “natural” nearshore area with a mix of bottom types and a relatively abundant and diverse macrophyte canopy. All survey data were placed into a GIS, which could be used to answer management questions such as the placement and character of habitat compensation projects in the harbour. Future surveys utilizing similar techniques could be used to determine long term changes in the nearshore of the harbour. Cite this data as: Vandermeulen H. Data of: A Video, Sidescan and Echosounder Survey of Nearshore Halifax Harbour. Published: September 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9122c3e2-3cfc-45d0-ac36-aecb306130f6

  • Categories  

    The Canadian Hydrographic Service (CHS) Low Water Mark Lines provide alongshore and across-shore geomorphological and biological attributes of the low water mark shoreline. The lines are used in the CHS nautical charts to represent the level reached by sea water at low tide.

  • Categories  

    This dataset provides projected 30-year, 50-year, and 100-year return levels for harbours in British Columbia by 2050 and 2100 under a high emission scenario SSP585, relative to the mean sea level over 1993-2020. The return levels are a combination of estimated present extreme sea levels and projected mean sea level rise. The present extreme sea levels are derived from hourly coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM). The projected mean sea level rise is derived from the regional mean sea level rise data of the IPCC 6th Assessment Report under SSP585, adjusted for the local vertical land motion.

  • Categories  

    The Canadian Hydrographic Service (CHS) High Water Mark Lines provide alongshore and across-shore geomorphological and biological attributes of the high water mark shoreline. The lines are used in the CHS nautical charts to represent the level reached by sea water at high tide.

  • Categories  

    The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video -Tabusintac 2008. Published: March 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/d1c58bc6-69d4-47b2-bb19-988f88233900

  • Categories  

    This dataset provides projected 30-year, 50-year, and 100-year return levels for harbours in British Columbia by 2050 and 2100 under an intermediate emission scenario SSP245, relative to the mean sea level over 1993-2020. The return levels are a combination of estimated present extreme sea levels and projected mean sea level rise. The present extreme sea levels are derived from hourly coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM). The projected mean sea level rise is derived from the regional mean sea level rise data of the IPCC 6th Assessment Report under SSP245, adjusted for the local vertical land motion.

  • Categories  

    Data layers show commercial fishery footprints for directed fisheries using bottom and pelagic longlines for groundfish and large pelagics respectively, and traps for hagfish, LFA 41 and Grey Zone lobster, snow crab, and other crab on the Scotian Shelf, the Bay of Fundy, and Georges Bank in NAFO Divisions 4VWX and Canadian portions of 5Y and 5Z. Bottom longline and trap fishery maps aggregate commercial logbook effort (bottom longline soak time and logbook entries) per 2-minute grid cell using 2002–2017 data. Pelagic longline maps aggregate speed-filtered vessel monitoring system (VMS) track lines as vessel minutes per km2 on a base-10 log scale using 2003–2018 data. The following data layers are included in the mapping service for use in marine spatial planning and ecological risk assessment: 1) multi-year and quarterly composite data layers for bottom longline and trap gear, and 2) multi-year and monthly composite data layers for pelagic longline gear. Additional details are available online: S. Butler, D. Ibarra and S. Coffen-Smout, 2019. Maritimes Region Longline and Trap Fisheries Footprint Mapping for Marine Spatial Planning and Risk Assessment. Can. Tech. Rep. Fish. Aquat. Sci. 3293: v + 30 p. http://publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-6-3293-eng.pdf

  • Categories  

    This layer details Important Areas (IAs) relevant to key invertebrate species (which are not corals or sponges) in the Strait of Georgia (SOG) ecoregion. This data was mapped to inform the selection of marine Ecologically and Biologically Significant Areas (EBSA). Experts have indicated that these areas are relevant based upon their high ranking in one or more of three criteria (Uniqueness, Aggregation, and Fitness Consequences). The distribution of IAs within ecoregions is used in the designation of EBSAs. Canada’s Oceans Act provides the legislative framework for an integrated ecosystem approach to management in Canadian oceans, particularly in areas considered ecologically or biologically significant. DFO has developed general guidance for the identification of ecologically or biologically significant areas. The criteria for defining such areas include uniqueness, aggregation, fitness consequences, resilience, and naturalness. This science advisory process identifies proposed EBSAs in Canadian Pacific marine waters, specifically in the Strait of Georgia (SOG), along the west coast of Vancouver Island (WCVI, southern shelf ecoregion), and in the Pacific North Coast Integrated Management Area (PNCIMA, northern shelf ecoregion). Initial assessment of IA's in PNCIMA was carried out in September 2004 to March 2005 with spatial data collection coordinated by Cathryn Clarke. Subsequent efforts in WCVI and SOG were conducted in 2009, and may have used different scientific advisors, temporal extents, data, and assessment methods. WCVI and SOG IA assessment in some cases revisits data collected for PNCIMA, but should be treated as a separate effort. Other datasets in this series detail IAs for birds, cetaceans, coral and sponges, fish, geographic features, and other vertebrates. Though data collection is considered complete, the emergence of significant new data may merit revisiting of IA's on a case by case basis.

  • Categories  

    The Eastern Shore Islands was announced as an "Area of Interest" (AOI) in 2018 by the DFO Maritimes region to potentially be considered for a Marine Protected Area under the federal Oceans Act. As part of its mandate for monitoring established and potential conservation areas, DFO Science regularly deploys instruments including conductivity/temperature/depth (CTD) loggers, and other instruments for measuring dissolved oxygen, nutrients, and other chemical ocean properties. This data collection includes temperature and other oceanographic records for the ESI AOI from June 2024 onward. The data are derived from temperature loggers (Hobo Tidbit loggers or similar) and Sea-Bird MicroCATs, but may in future years include current profiles or additional oceanographic data. These data will be used to monitor temperatures in this coastal region to detect any biological shifts associated with temperature and climate fluctuations, and be used to groundtruth oceanographic models. Cite this data as: Jeffery, N., Stanley, R., Pettitt- Wade, H. (2025): Data of: Baseline oceanographic records for the Eastern Shore Islands Area of Interest. Published: September 2025. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/f0020cec-5671-4908-8fdd-11fc097de99d