Topic
 

oceans

1084 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1084
  • Categories  

    A novel towfish incorporating sidescan and video hardware was used to ground truth echosounder data for the nearshore of Halifax Harbour. The resulting sampling grid extended from the shoreline to a depth of 10 m, including Bedford Basin through the Inner Harbour to the Outer Harbour. Each of these three zones could be distinguished from the others based upon combinations of substrate type, benthic invertebrates, and macrophyte canopy. Bedford Basin had a relative lack of macrophytes and evidence of intense herbivory. The Inner Harbour was characterized by shoreline hardening due to anthropogenic activities. The Outer Harbour was the most “natural” nearshore area with a mix of bottom types and a relatively abundant and diverse macrophyte canopy. All survey data were placed into a GIS, which could be used to answer management questions such as the placement and character of habitat compensation projects in the harbour. Future surveys utilizing similar techniques could be used to determine long term changes in the nearshore of the harbour. Cite this data as: Vandermeulen H. Data of: A Video, Sidescan and Echosounder Survey of Nearshore Halifax Harbour. Published: September 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9122c3e2-3cfc-45d0-ac36-aecb306130f6

  • Categories  

    In 2012 and 2013, Fisheries and Oceans Canada conducted benthic imagery surveys in the Davis Strait and Baffin Basin in two areas then closed to bottom fishing, the Hatton Basin Voluntary Closure (now the Hatton Basin Conservation Area) and the Narwhal Closure (now partially in the Disko Fan Conservation Area). The photo transects were established as long-term biodiversity monitoring sites to monitor the impact of human activity, including climate change, on the region’s benthic marine biota in accordance with the protocols of the Circumpolar Biodiversity Monitoring Program established by the Council of Arctic Flora and Fauna. These images were analyzed in a techncial report that summarises the epibenthic megafauna found in seven image transects from the Disko Fan Conservation Area. A total of 480 taxa were found, 280 of which were identified as belonging to one of the following phyla: Annelida, Arthropoda, Brachiopoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nemertea, and Porifera. The remaining 200 taxa could not be assigned to a phylum and were categorised as Unidentified. Each taxon was identified to the lowest possible taxonomic level, typically class, order, or family. The summaries for each of the taxa include their identification numbers in the World Register of Marine Species and Integrated Taxonomic Information System’s databases, taxonomic hierarchies, images, and written descriptions. The report is intended to provide baseline documentation of the epibenthic megafauna in the Disko Fan Conservation Area, and serve as a taxonomic resource for future image analyses in the Arctic. Baker, E., Beazley, L., McMillan, A., Rowsell, J. and Kenchington, E. 2018. Epibenthic Megafauna of the Disko Fan Conservation Area in the Davis Strait (Eastern Arctic) Identified from In Situ Benthic Image Transects. Can. Tech. Rep. Fish. Aquat. Sci. 3272: vi + 388 p.

  • Categories  

    Phytoplankton counts (cell/L)) at the 3 fixed stations and some of the 46 stations grouped into Atlantic Zone Monitoring Program (AZMP) transects under Quebec region responsibility. Phytoplankton data counts at AZMP stations in June 2014, 2018 and 2019 are displayed as 5 layers: Diatoms, Dinoflagellates, Flagellates, Protozoans and Total Phytoplankton. Another layer displays the fixed stations Rimouski, Anticosti Gyre and Gaspe Current and the attached files contain the phytoplankton data acquired at those stations: a .png file for each one, showing time series of counts for the 5 groups, and a .csv file containing the data themselves (columns : Latitude,Longitude, Date(UTC), Depth_min/Profondeur_min(m), Depth_max/Profondeur_max(m), Diatoms/Diatomées(cells/L), Dinoflagellates/Dinoflagellés(cells/L), Flagellates/Flagellés(cells/L), Protozoans/Protozoaires(cells/L), Phytoplankton/Phytoplancton(cells/L)). Purpose The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment. The AZMP collects data from a network of stations composed of high-frequency monitoring sites and cross-shelf sections in each following DFO region: Québec, Gulf, Maritimes and Newfoundland. The sampling design provides basic information on the natural variability in physical, chemical, and biological properties of the Northwest Atlantic continental shelf. Cross-shelf sections sampling provides detailed geographic information but is limited in a seasonal coverage while critically placed high-frequency monitoring sites complement the geography-based sampling by providing more detailed information on temporal changes in ecosystem properties. In Quebec region, two surveys (46 stations grouped into transects) are conducted every year, one in June and the other in autumn in the Estuary and Gulf of St. Lawrence. Historically, 3 fixed stations were sampled more frequently. One of these is the Rimouski station that still takes part of the program and is sampled about weekly throughout the summer and occasionally in the winter period. Annual reports (physical, biological and a Zonal Scientific Advice) are available from the Canadian Science Advisory Secretariat (CSAS), (http://www.dfo-mpo.gc.ca/csas-sccs/index-eng.htm). Devine, L., Scarratt, M., Plourde, S., Galbraith, P.S., Michaud, S., and Lehoux, C. 2017. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/034. v + 48 pp. Supplemental Information Phytoplankton samples are collected using Niskin bottles, preserved with acid Lugol solution and analysed according to AZMP sampling protocol: Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain, P. 2002. Atlantic Zonal Monitoring Program sampling protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223: iv + 23 pp.

  • Categories  

    This visualization product displays the single use plastics (SUP) related items abundance of marine macro-litter (> 2.5cm) per beach per year from non-MSFD monitoring surveys, research & cleaning operations. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale. Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Selection of SUP related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines, the European Threshold Value for Macro Litter on Coastlines and the Joint list of litter categories for marine macro-litter monitoring from JRC (these three documents are attached to this metadata). The selection was adapted to the Joint list of litter categories SUP identification and therefore contains some differences with the selection made for previously published versions of this product; - Exclusion of surveys without associated length; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of SUP related items of the survey (normalized by 100 m) = Number of SUP related items of the survey x (100 / survey length) Then, this normalized number of SUP related items is summed to obtain the total normalized number of SUP related items for each survey. Finally, the median abundance of SUP related items for each beach and year is calculated from these normalized abundances of SUP related items per survey. Percentiles 50, 75, 95 & 99 have been calculated taking into account SUP related items from other sources data for all years. More information is available in the attached documents. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

  • Categories  

    This visualization product displays the total abundance of marine macro-litter (> 2.5cm) per beach, per 100m & to 1 survey aggregated over the period 2001 to 2020 from Marine Strategy Framework Directive (MSFD) monitoring surveys. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale. Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of MSFD surveys only (exclusion of other monitoring, cleaning and research operations); - Exclusion of beaches without coordinates; - Some categories & some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata (total abundance list). This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Normalization of survey lengths to 100m & 1 survey / year: in some cases, the survey length was not exactly 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length) Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey. Finally, a median is calculated over the entire period among all these total numbers of litter per 100m calculated for each survey. Sometimes the survey length was null or equal to 0. Assuming that the MSFD protocol has been applied, the length has been set at 100m in these cases. The size of each circle on this map increases with the calculated median number of marine litter per beach, per 100m & to 1 survey. The median litter abundance values displayed in the legend correspond to the 50 and 99 percentiles and the maximum value. More information is available in the attached documents. Warning: - the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area. - This map was created to give an idea of the distribution of beach litter between 2001 and 2021 in a synthetic manner. NOT ALL BEACHES MAY HAVE DATA FOR THE ENTIRE PERIOD, SO IT IS NOT POSSIBLE TO MAKE A COMPARISON BETWEEN BEACHES.

  • Categories  

    This dataset provides projected 30-year, 50-year, and 100-year return levels for harbours in British Columbia by 2050 and 2100 under a low emission scenario SSP126, relative to the mean sea level over 1993-2020. The return levels are a combination of estimated present extreme sea levels and projected mean sea level rise. The present extreme sea levels are derived from hourly coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM). The projected mean sea level rise is derived from the regional mean sea level rise data of the IPCC 6th Assessment Report under SSP126, adjusted for the local vertical land motion

  • Categories  

    Number of megafauna species/taxa in the Arctic (7,322 stations in total), based on recent trawl investigations. Stations with highest species/taxon number are sorted to the top, meaning that dense concentrations of stations (e.g. Eastern Canada, Barents Sea), with low species numbers are hidden behind stations with higher species numbers. Also note that species numbers are somewhat biased by differing taxonomic resolution between studies. Data from: Icelandic Institute of Natural History, Iceland; Marine Research Institute, Iceland; University of Alaska, Fairbanks, U.S.; Greenland Institute of Natural Resources, Greenland; Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia; Université du Québec à Rimouski, Canada; Fisheries and Oceans Canada; Institute of Marine Research, Norway; and Polar Research Institute of Marine Fisheries and Oceanography, Murmansk, Russia. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/findings/benthos" target="_blank">Chapter 3</a> - Page 91 - Box figure 3.3.2 Several regions of the Pan Arctic have been sampled with trawl. Even though the trawl configurations and the taxonomic level are different from area to area, we choose to consider the taxonomic richness as relatively comparative.

  • Categories  

    This dataset represents meat weight and shell height data of commercial size Sea Scallop (Placopecten magellanicus; ≥ 80 mm shell height) from 2011-2023 from the Bay of Fundy Inshore Scallop Survey collected from June to mid-August. Wet meat weights were recorded to a tenth of a gram and shell heights are measured in millimeters. Meat weights and shell heights are sampled from a subset of scallops caught on survey and this detailed sampling is conducted from approximately half of the tows conducted. Each row in the dataset represents an individual scallop and contains information such as tow number, tow date, cruise name, geographical coordinates (decimal degrees, WGS 84) and the Scallop Production Area in which the tow took place. Survey protocols are documented in Glass (2017). This dataset contains tow data from a comparative survey conducted in 2012 (Smith et al., 2013). Further, these data correspond to the publication of Hebert et al. (2025). References Glass, A. 2017. Maritimes Region Inshore Scallop Assessment Survey: Detailed Technical Description. Can. Tech. Rep. Fish. Aquat. Sci. 3231: v + 32 p. Hebert, N, Sameoto, J.A., Keith, D.M., Murphy, O.A., Brown, C.J., Flemming, J. 2025. Interannual variability in the length–weight relationship can disrupt the abundance–biomass correlation of sea scallop (Placopecten magellanicus). ICES. J. Mar. Sci. Smith, S.J., Glass, A., Sameoto. J., Hubley, B., Reeves, A., and Nasmith, L. 2013. Comparative survey between Digby and Miracle drag gear for scallop surveys in the Bay of Fundy. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/161. iv + 20 p. Cite this data as: Sameoto, J.A. Data of: Bay of Fundy Sea Scallop Meat Weight and Shell Height Data 2011 to 2023. Published: December 2025. Population Ecology Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/65d32794-2d81-4682-b0ea-8d8bbe907a58

  • Categories  

    Description: These commercial whale watching data are comprised of two datasets. First, the ‘whale_watching_trips_jun_sep_british_columbia’ data layer summarizes commercial whale watching trips that took place in 2019, 2020 and 2021 during the summer months (June to September). The second data layer, ‘wildlife_viewing_events_jun_sep_british_columbia’ contains estimated wildlife viewing events carried out by commercial whale watching vessels for the same years (2019, 2020 and 2021) and months (June to September). Commercial whale watching trips and wildlife viewing events are summarized using the same grid, and they can be related using the unique cell identifier field ‘cell_id’. The bulk of this work was carried out at University of Victoria and was funded by the Marine Environmental Observation, Prediction and Response (MEOPAR) Network under the ‘Whale watching AIS Vessel movement Evaluation’ or WAVE project (2018 – 2022). The aim of the WAVE project was to increase the understanding of whale watching activities in Canada’s Pacific region using vessel traffic data derived from AIS (Automatic Identification System). The work was finalized by DFO Science in the Pacific Region. These spatial data products of commercial whale watching operations can be used to inform Marine Spatial Planning, conservation planning activities, and threat assessments involving vessel activities in British Columbia. Methods: A list of commercial whale watching vessels based in British Columbia and Washington State and their corresponding MMSIs (Maritime Mobile Service Identity) was compiled from the whale watching companies and Marine Traffic (www.marinetraffic.com). This list was used to query cleaned CCG AIS data to extract AIS positions corresponding to commercial whale watching vessels. A commercial whale watching trip was defined as a set of consecutive AIS points belonging to the same vessel departing and ending in one of the previously identified whale watching home ports. A classification model (unsupervised Hidden Markov Model) using vessel speed as the main variable was developed to classify AIS vessel positions into wildlife-viewing and non wildlife viewing events. Commercial whale watching trips in the south and north-east of Vancouver Island were limited to a duration of minimum 1 hour and maximum 3.5 hours. For trips in the west coast of Vancouver island the maximum duration was set to 6 hours. Wildlife-viewing events duration was set to minimum of 10 minutes to a maximum of 1 hour duration. For more information on methodology, consult metadata pdf available with the Open Data record. References: Nesdoly, A. 2021. Modelling marine vessels engaged in wildlife-viewing behaviour using Automatic Identification Systems (AIS). Available from: https://dspace.library.uvic.ca/handle/1828/13300. Data Sources: Oceans Network Canada (ONC) provided encoded AIS data for years 2019, 2020 and 2021, within a bounding box including Vancouver Island and Puget Sound used to generate these products. This AIS data was in turn provided by the Canadian Coast Guard (CCG) via a licensing agreement between the CCG and ONC for the non-commercial use of CCG AIS Data. More information here: https://www.oceannetworks.ca/science/community-based-monitoring/marine-domain-awareness-program/ Molly Fraser provided marine mammal sightings data collected on board a whale watching vessels to develop wildlife-viewing events classification models. More information about this dataset here: https://www.sciencedirect.com/science/article/pii/S0308597X20306709?via%3Dihub Uncertainties: The main source of uncertainty is with the conversion of AIS point locations into track segments, specifically when the distance between positions is large (e.g., greater than 1000 meters).

  • Categories  

    Description: In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100–600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. The rasters available in this dataset project the occurrence of each of the 34 groundfish species in a 3 km^2 grid cell for the historical baseline, as well as for two emissions scenarios, from each of the two regional ocean models (BCCM and NEP36). Each projection layer is provided as the mean projected occurrence as well as the lower and upper 95% confidence interval of projected occurrence. Methods: Estimated species response curves: We estimated how the observed distribution of groundfish species is determined by temperature, dissolved oxygen and seafloor depth using data from fisheries-independent scientific research trawls spanning the entire American and Canadian west coast. We included data from 4 surveys (NOAA West Coast, NOAA Alaska, NOAA Bering or DFO Pacific) from 2000 to 2019. For each species, we modelled occurrences in the coastwide trawl dataset using a generalized linear model (GLM) using the sdmTMB package in R v. 4.0.2. The predictors were temperature, log dissolved oxygen, log depth and survey. We included quadratic terms for temperature and log depth to allow species occurrences to peak at intermediate values. We fitted a breakpoint function for log dissolved oxygen to reflect the fact oxygen is a limiting factor. We assessed the forecasting accuracy of the SDM by comparing how well a model fitted to only data from 2000 to 2010 could forecast species’ occurrences in trawls within our focal region for the period of 2011–2019. We assessed all 77 groundfish species that were present in the overall trawl dataset, however the final analysis included only the 34 species for which the models had adequate forecasting ability. Projecting groundfish biodiversity changes: We based our groundfish biodiversity change projections on two regional models that downscale climate projections: the British Columbia Continental Margin model (BCCM) and the North-Eastern Pacific Canadian Ocean Ecosystem model (NEP36-CanOE). We used a historical baseline of 1986–2005 and future projected values for 2046–2065 based on RCP 4.5 and 8.5 emissions scenarios. Using the models that we validated in our forecasting accuracy assessment, we projected the occurrence of each species in each 3 km^2 grid cell for the historical baseline, as well as for two emissions scenarios, from each of the two regional ocean models. Uncertainties: Source survey data was collected by consistent methods with survey-grade GPS for all years included. Data quality is expected to be high. Modeled data are at 3 km resolution. Outputs are as accurate as source input models and are deemed to be of high quality and accurate based upon the precision of model inputs. Projecting biodiversity responses to climate change involves considerable uncertainty and our approach allows us to quantify some aspects of this. Of the uncertainty that we could quantify, roughly half was due to uncertainty in our SDMs and the remainder was due to regional ocean model uncertainty or scenario uncertainty. This amount of uncertainty in the SDMs is typical, stemming from the fact that contemporary species distributions are also influenced by other factors that we have not included in our model. In addition, although oxygen demand is understood to vary with temperature, limitations in the implementation of breakpoint models prevented us from estimating a temperature-dependent oxygen breakpoint. However, although somewhat unrealistic, this limitation is unlikely to have greatly increased the uncertainty in our SDMs because low oxygen concentrations occurred almost exclusively at depths where temperature variation and projected change was small. To reduce uncertainty due to year-to-year variation in climate, our model projections are based on 20-year climatologies with a future period that is far enough ahead to ensure that changes are unambiguously due to greenhouse gases. We have made projections based on two different emissions scenarios, and two different regional ocean models that are both downscaled from the same global model, the second generation Canadian Earth System Model (CanESM2), using different downscaling techniques. While the BCCM model was run inter-annually and then averaged to produce the climatologies, the NEP36 model used atmospheric climatologies with augmented winds to force the ocean model and produce representative climatologies. Comparing these regional projections provides an estimate of the uncertainty across different regional downscaling models and methods. We find that the projected impacts of climate change on the groundfish community are more sensitive to the differences in the regional ocean models than they are to the emissions scenarios used. However, these differences are in magnitude (changes tend to be larger based on NEP36 compared with the BCCM) rather than in direction, with both models resulting in similar overall patterns of biodiversity change and turnover for the groundfish community. Over the 60-year time period (1986–2005 versus 2046–2065) used in our study, our projections suggest that groundfish community changes are similar regardless of the scenario used.