oceans
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The Quebec—Saint-Lawrence River dataset is part of Environment and Climate Change Canada’s Shoreline Classification and Pre-Spill database. Shoreline classification data has been developed for use by the Environmental Emergencies Program of Environment and Climate Change Canada for environmental protection purposes. Marine and freshwater shorelines are classified according to the character (substrate and form) of the upper intertidal (foreshore) or upper swash zone (Sergy, 2008). This is the area where oil from a spill usually becomes stranded and where the treatment or cleanup activities take place. The basic parameter that defines the shoreline type is the material that is present in the intertidal zone. The presence or absence of sediments is a key factor in determining whether oil is stranded on the surface of a substrate or can penetrate and/or be buried. This dataset contains thousands of linear shoreline segments ranging in length from 200 m and 2 km long. The entities represent the location of the segments and their geomorphological description. There exist further fields in the attribute table for this dataset. We are currently working on standardizing our shoreline segmentation datasets and the updated data will soon be uploaded to the catalog. Sergy, G. (2008). The Shoreline Classification Scheme for SCAT and Oil Spill Response in Canada. Proceedings of the 31stArctic and Marine Oil Spill Program Technical Seminar.Environment Canada, Ottawa, ON, Pp. 811-819.
-
This dataset represents meat weight and shell height data of commercial size Sea Scallop (Placopecten magellanicus; ≥ 80 mm shell height) from 2011-2023 from the Bay of Fundy Inshore Scallop Survey collected from June to mid-August. Wet meat weights were recorded to a tenth of a gram and shell heights are measured in millimeters. Meat weights and shell heights are sampled from a subset of scallops caught on survey and this detailed sampling is conducted from approximately half of the tows conducted. Each row in the dataset represents an individual scallop and contains information such as tow number, tow date, cruise name, geographical coordinates (decimal degrees, WGS 84) and the Scallop Production Area in which the tow took place. Survey protocols are documented in Glass (2017). This dataset contains tow data from a comparative survey conducted in 2012 (Smith et al., 2013). Further, these data correspond to the publication of Hebert et al. (2025). References Glass, A. 2017. Maritimes Region Inshore Scallop Assessment Survey: Detailed Technical Description. Can. Tech. Rep. Fish. Aquat. Sci. 3231: v + 32 p. Hebert, N, Sameoto, J.A., Keith, D.M., Murphy, O.A., Brown, C.J., Flemming, J. 2025. Interannual variability in the length–weight relationship can disrupt the abundance–biomass correlation of sea scallop (Placopecten magellanicus). ICES. J. Mar. Sci. Smith, S.J., Glass, A., Sameoto. J., Hubley, B., Reeves, A., and Nasmith, L. 2013. Comparative survey between Digby and Miracle drag gear for scallop surveys in the Bay of Fundy. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/161. iv + 20 p. Cite this data as: Sameoto, J.A. Data of: Bay of Fundy Sea Scallop Meat Weight and Shell Height Data 2011 to 2023. Published: December 2025. Population Ecology Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/65d32794-2d81-4682-b0ea-8d8bbe907a58
-
This dataset provides 1/36-degree monthly mean ocean current climatology (October - March) in the Northeast Pacific. The climatological fields are derived from hourly ocean currents for the perid from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM).
-
This is a point layer of the names and locations of the actively used commercial shipping anchorages in British Columbia. These point locations were manually compiled from available port guides and documents. The objective of this dataset is to provide a consolidated file containing all active commercial shipping anchorage locations as there has been a lack of consistency between different sources due to variations in names and locations in different datasets and historical changes to anchorage locations.
-
To develop a database of high quality CTD observations at key locations in DFO’s Pacific Region, 22 stations have been selected for sampling as often as possible. Chief Scientists of DFO vessels with CTD equipment on board are asked to acquire a CTD profile at as many of these stations as possible. There may be circumstances that will prevent conducting a CTD cast but the intent is to collect as many as possible such that over time useful time series of CTD profiles will be available at these locations.
-
Map of contemporary marine fish data sources. Green squares indicate data from benthic trawl monitoring efforts, blue squares indicate data from benthic trawl surveys, while red triangles indicate data from pelagic trawl monitoring efforts. Red line indicates the CAFF boundary. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/findings/marine-fishes" target="_blank">Chapter 3</a> - Page 112 - Figure 3.4.1
-
This visualization product displays beaches locations where the Marine Strategy Framework Directive (MSFD) monitoring protocol has been applied to collate data on macrolitter (> 2.5 cm). Reference lists associated with these protocols have been indicated with different colors in the map. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale. Preliminary processings were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of MSFD surveys only (exclusion of other monitoring, cleaning and research operations); - Exclusion of beaches without coordinates; - Some categories & some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. This list was created using EU Marine Beach Litter Baselines, the European Threshold Value for Macro Litter on Coastlines and the Joint list of litter categories for marine macro-litter monitoring from JRC (these three documents are attached to this metadata). More information is available in the attached documents. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.
-
In 2017 the SAMBR synthesized data about biodiversity in Arctic marine ecosystems around the circumpolar Arctic.. SAMBR highlighted observed changes and relevant monitoring gaps. This 2021 update provides information on the status of marine mammals in the Arctic from 2015–2020: More detail can be found in the Marine Mammals 2021 Technical report. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT
-
This product displays for Hexachlorobenzene, positions with percentages of all available data values per group of animals that are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for all available years.
-
Seasonal time series of the major zooplankton in Franklin Bay, Canada STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/findings/plankton" target="_blank">Chapter 3</a> - Page 78 - Figure 3.2.9 Mesozooplankton abundance, integrated from 10 m above the seafloor to the surface (ind m-2), in Franklin Bay during the CASES 2003-04 overwintering expedition. Most of the sampling was done at the overwintering station and a few stations were close to this site in autumn 2003 and summer 2004.
Arctic SDI catalogue