oceans
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The Coastal Environmental Baseline Program is a multi-year Fisheries and Oceans Canada initiative designed to work with Indigenous and local communities and other key parties to collect coastal environmental data at six pilot sites across Canada (Port of Vancouver, Port of Prince Rupert, Lower St. Lawrence Estuary, Port of Saint John, Placentia Bay, and Iqaluit). The goal of the Program is to gather local information in these areas in effort to build a better understanding of marine ecological conditions. The Maritimes region has developed a physical oceanography program to align with the oceanographic interests and data needs of local communities and stakeholders, with the goal of sharing this information via open data. Starting in 2019, oceanographic parameters including temperature, salinity, depth, turbidity and currents have been continuously monitored at a series of locations covering a broad range of environments in the Port of Saint John and approaches vicinity, including the lower Saint John and Kennebecasis rivers, coastal fringe marshes and embayments, as well as the Musquash estuary Marine Protected Area (MPA). This dataset includes CTD data starting in 2019 and turbidity data from August 2020. Data collection methods range from bottom-mounted instruments in water depths of 10-50 meters, buoyant surface moorings, and hard-mounted instruments in intertidal zones. Intertidal data is interrupted during some low tide events, where the water level drops below the sensor, resulting in loss of functionality for periods up to 1-2 hours. Overall this dataset captures a dynamic balance between salt and fresh water on the highly tidal lower Saint John river, coastal seasonal dynamics in near-shore marine environments in the Musquash MPA, and the constant fluctuations of intertidal creeks and marshes. Update 2 - April 2025: included 2023-24 data Update 1 - Nov 2023: included 2022 data; removed daylight savings errors from 2019, 2020 and 2021; updated position for Evandale surface mooring.
-
This collection holds the layers used for the "Map of Upper Intertidal shoreline segmentation with Shoreline Cleanup Assessment Technique (SCAT) classification", a WMS service maintained by ECCC. The segmentation covers shorelines for Northern Canada, the North coast of British Columbia, as well as Ontario, Quebec, and Atlantic regions.
-
The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video - Bouctouche. Published: November 2017. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/b4c83cd2-20f2-47d8-8614-08c1c44c9d8c
-
This dataset was compiled as part of a multiyear effort lead by Fisheries and Oceans Canada (DFO) to support sustainable aquaculture regulation in the Coast of Bays, an area of the south coast of Newfoundland. It is the second of a series aiming to provide an oceanographic knowledge baseline of the Coast of Bays. This dataset includes temperature, salinity, and dissolved oxygen concentration profiles collected during CTD surveys, each survey containing a varying number of casts/profiles taken within the area of interest. In total, 760 profiles from 11 surveys, executed over 276 stations, were collected from June 2009 to November 2013. Data were processed and quality controlled using the instrumentation manufacturer guidelines, custom tools as well as visual inspection. Data are provided in tab-delimited text-based format compatible with most data processing language and tools (e.g. MS. Excel) as well as with the Ocean Data View software (https://odv.awi.de/) for rapid visualisation. A summary of the CTD profiles and stations surveyed is also provided as a comma separated values (CSV) file. A full description of the data and of its use in the context of the motivating project can be found in http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2017/2017_077-eng.html. Analyses from this dataset were presented during a Canadian Science Advisory Secretariat (CSAS) meeting which took place in St John’s in March 2015 (http://www.dfo-mpo.gc.ca/csas-sccs/schedule-horraire/2015/03_25-26b-eng.html) and from which a Science Advisory Report (http://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2016/2016_039-eng.html) and Proceedings (http://www.dfo-mpo.gc.ca/csas-sccs/Publications/Pro-Cr/2017/2017_043-eng.html) were published.
-
In 2012 and 2013, Fisheries and Oceans Canada conducted benthic imagery surveys in the Davis Strait and Baffin Basin in two areas then closed to bottom fishing, the Hatton Basin Voluntary Closure (now the Hatton Basin Conservation Area) and the Narwhal Closure (now partially in the Disko Fan Conservation Area). The photo transects were established as long-term biodiversity monitoring sites to monitor the impact of human activity, including climate change, on the region’s benthic marine biota in accordance with the protocols of the Circumpolar Biodiversity Monitoring Program established by the Council of Arctic Flora and Fauna. These images were analyzed in a techncial report that summarises the epibenthic megafauna found in seven image transects from the Disko Fan Conservation Area. A total of 480 taxa were found, 280 of which were identified as belonging to one of the following phyla: Annelida, Arthropoda, Brachiopoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nemertea, and Porifera. The remaining 200 taxa could not be assigned to a phylum and were categorised as Unidentified. Each taxon was identified to the lowest possible taxonomic level, typically class, order, or family. The summaries for each of the taxa include their identification numbers in the World Register of Marine Species and Integrated Taxonomic Information System’s databases, taxonomic hierarchies, images, and written descriptions. The report is intended to provide baseline documentation of the epibenthic megafauna in the Disko Fan Conservation Area, and serve as a taxonomic resource for future image analyses in the Arctic. Baker, E., Beazley, L., McMillan, A., Rowsell, J. and Kenchington, E. 2018. Epibenthic Megafauna of the Disko Fan Conservation Area in the Davis Strait (Eastern Arctic) Identified from In Situ Benthic Image Transects. Can. Tech. Rep. Fish. Aquat. Sci. 3272: vi + 388 p.
-
A towfish containing sidescan and video hardware was used to map eelgrass in two shallow northern New Brunswick estuaries. The sidescan and video data were useful in documenting suspected impacts of oyster aquaculture gear and eutrophication on eelgrass. With one boat and a crew of three, the mapping was accomplished at a rate of almost 10 km2 per day. That rate far exceeds what could be accomplished by a SCUBA based survey with the same crew. Moreover, the towfish survey applied with a complementary echosounder survey is potentially a more cost effective mapping method than satellite based remote sensing. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video - Shippagan 2007. Published: November 2019. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/6454594e-c8f9-41c4-801a-db125b8a8875
-
Status of monitoring activities for each Focal Ecosystem Component (i.e., selected species groups) across each Arctic Marine Area as included in this report. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/monitoring-status-and-advice" target="_blank">Key Findings</a> - Page 5 - Figure 1
-
A novel, bay – scale (i.e. tens of km) survey method was employed to examine algal populations on the southwestern shore of Cape Breton, Canada, for the purposes of potential economic exploitation. Since traditional remote sensing methods were unlikely to be successful in these waters, underwater video and acoustic methods were applied. A transponder positioned towfish housing video camera and sidescan sonar was hauled along predetermined transects perpendicular to shore to provide information on bottom type and algal cover. The towfish data were used to ground truth echosounder data (bottom type and macrophyte canopy height) collected along 5, 10 and 20 m depth contours. The survey area was divided into six zones comprising a range of exposure, depth and bottom types. Destructive quadrat samples were collected at each depth plus shore stations to provide biomass estimates. Over thirty five taxa were enumerated, indicating depths and zones of common occurrence. Ascophyllum was abundant at some of the shore stations. The genera Chondrus, Cystoclonium, Desmarestia, Fucus, Phyllophora, Polysiphonia, and Saccharina were common at 5 m. Desmarestia and Saccharina dominated at 10 m with wet weights sometimes over 1 kg·m-2. Agarum dominated at 20 m. The towfish / echosounder grid sampling system was relatively coarse in order to cover the 140 km2 survey area within 12 days. As a result, the survey did not produce spatially detailed information. However, adequate information was gathered to describe the general characteristics of bottom type and algal cover by zone and for focusing further exploration--Abstract, p. vi. Cite this data as: Vandermeulen H. Data of: A Novel Video and Acoustic Survey of the Seaweeds of Isle Madame. Published: August 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/ebdd8f91-9131-45f0-8aec-aba9f65e3fae
-
A novel towfish incorporating sidescan and video hardware was used to ground truth echosounder data for the nearshore of Halifax Harbour. The resulting sampling grid extended from the shoreline to a depth of 10 m, including Bedford Basin through the Inner Harbour to the Outer Harbour. Each of these three zones could be distinguished from the others based upon combinations of substrate type, benthic invertebrates, and macrophyte canopy. Bedford Basin had a relative lack of macrophytes and evidence of intense herbivory. The Inner Harbour was characterized by shoreline hardening due to anthropogenic activities. The Outer Harbour was the most “natural” nearshore area with a mix of bottom types and a relatively abundant and diverse macrophyte canopy. All survey data were placed into a GIS, which could be used to answer management questions such as the placement and character of habitat compensation projects in the harbour. Future surveys utilizing similar techniques could be used to determine long term changes in the nearshore of the harbour. Cite this data as: Vandermeulen H. Data of: A Video, Sidescan and Echosounder Survey of Nearshore Halifax Harbour. Published: September 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9122c3e2-3cfc-45d0-ac36-aecb306130f6
-
Data layers show commercial fishery footprints for directed fisheries using bottom and pelagic longlines for groundfish and large pelagics respectively, and traps for hagfish, LFA 41 and Grey Zone lobster, snow crab, and other crab on the Scotian Shelf, the Bay of Fundy, and Georges Bank in NAFO Divisions 4VWX and Canadian portions of 5Y and 5Z. Bottom longline and trap fishery maps aggregate commercial logbook effort (bottom longline soak time and logbook entries) per 2-minute grid cell using 2002–2017 data. Pelagic longline maps aggregate speed-filtered vessel monitoring system (VMS) track lines as vessel minutes per km2 on a base-10 log scale using 2003–2018 data. The following data layers are included in the mapping service for use in marine spatial planning and ecological risk assessment: 1) multi-year and quarterly composite data layers for bottom longline and trap gear, and 2) multi-year and monthly composite data layers for pelagic longline gear. Additional details are available online: S. Butler, D. Ibarra and S. Coffen-Smout, 2019. Maritimes Region Longline and Trap Fisheries Footprint Mapping for Marine Spatial Planning and Risk Assessment. Can. Tech. Rep. Fish. Aquat. Sci. 3293: v + 30 p. http://publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-6-3293-eng.pdf
Arctic SDI catalogue