Keyword

Geoscientific information

3787 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 3787
  • The compilation represents publicly available reports of geochronological information for Canada. This includes federal, provincial and territorial government publications and reports, university theses, books and journals. Current coverage is limited to those areas that have been the target of recent past compilation efforts, with other areas and updates being included as they become ready. Users should be aware that the compilation may not include all available data for a given area. Every effort is made to report the ages without reinterpreting the original authors' intent. However, care has also been taken to highlight the salient features of the data by which the end-user can make initial judgment on the data robustness. Users are cautioned that because of space limitations and the necessary summarization of often complex datasets, that the original publication should be consulted to verify age interpretations and their rationale. Data may be extracted by the user in tab-delimited text format.

  • Categories  

    The "Canadian Database of Geochemical Surveys" has two long-term goals. Firstly, it aims to catalogue all of the regional geochemical surveys that have been carried out across Canada, beginning in the 1950s. Secondly, it aims to make the raw data from those surveys available in a standardised format. Over 1,500 surveys have been catalogued. Of these, the raw data for over 300 have been converted to a standardised format. The catalogue can be searched at https:\\geochem.nrcan.gc.ca

  • Categories  

    The “Thematic Soil Maps of Manitoba” is a revised and condensed version of the Manitoba Detailed Soils Database produced by CANSIS. It contains data relating to the soils slope, drainage, agricultural capability, erosion potential, and surface texture.

  • Categories  

    The wetland year count data included in this product is national in scope (entire forested ecosystem) and represents a wall to wall wetland characterization for 1984-2016 (Wulder et al. 2018). This product was generated using both annual gap free composite reflectance images and annual forest change maps following the Virtual Land Cover Engine (VLCE) process (see Hermosilla et al. 2018), over the 650 million ha forested ecosystems of Canada. Elements of the VLCE classification approach are inclusion of disturbance information in the processes as well as ensuring class transitions over time are logical. Further, a Hidden Markov Model is implemented to assess individual year class likelihoods to reduce variability and possible noise in year-on-year class assignments (for instances when class likelihoods are similar). The values can range from 0 to 33 denoting the number of years between 1984 and 2016 that a pixel was classified as wetland or wetland-treed in the VLCE data cube. For an overview on the data, image processing, and time series change detection methods applied, as well as information on independent accuracy assessment of the data, see Hermosilla et al. (2016; http://www.tandfonline.com/doi/full/10.1080/17538947.2016.1187673). A detailed description of the VLCE process and the subsequently generated land cover product, including an accuracy assessment, please see Hermosilla et al. (2018). The focused wetland analyses can be found described in Wulder et al (2018). Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • Categories  

    Forest Basal Area 2015 Cross-sectional area of tree stems at breast height. The sum of the cross-sectional area (i.e. basal area) of each tree in square metres in a plot, divided by the area of the plot (ha) (units = m2ha). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • Categories  

    This dataset provides wall-to-wall maps of forest structure across Canada's 650 million hectare forested ecosystems for the year 2022, generated at a spatial resolution of 30 m. Structure estimates include key attributes such as canopy height, canopy cover, and aboveground biomass, derived using a combination of airborne lidar and Landsat-based spectral composites. Structure models were trained using the - lidar-plot framework - (Wulder et al. 2012), which integrates co-located airborne lidar data and ground plot measurements with Landsat time-series composites (Hermosilla et al. 2016). A Nearest Neighbour imputation approach was applied to estimate structural attributes across the full extent of Canada's forested area. These nationally consistent products are intended to support strategic-level forest monitoring and assessment and are not designed for operational forest management. For further details on the methods, accuracy assessment, and source data, see Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714. https://doi.org/10.1016/j.rse.2018.07.024 (Matasci et al. 2018)

  • Categories  

    This dataset provides wall-to-wall maps of forest structure across Canada's 650 million hectare forested ecosystems for the year 2022, generated at a spatial resolution of 30 m. Structure estimates include key attributes such as canopy height, canopy cover, and aboveground biomass, derived using a combination of airborne lidar and Landsat-based spectral composites. Structure models were trained using the - lidar-plot framework - (Wulder et al. 2012), which integrates co-located airborne lidar data and ground plot measurements with Landsat time-series composites (Hermosilla et al. 2016). A Nearest Neighbour imputation approach was applied to estimate structural attributes across the full extent of Canada's forested area. These nationally consistent products are intended to support strategic-level forest monitoring and assessment and are not designed for operational forest management. For further details on the methods, accuracy assessment, and source data, see Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714. https://doi.org/10.1016/j.rse.2018.07.024 (Matasci et al. 2018)

  • Categories  

    Forest Elevation(Ht) Mean 2015 Mean height of lidar first returns (m). Represents the mean canopy height. Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Wulder et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • Categories  

    Forest 95th Percentile Elevation(Ht) 2015 95th percentile of first returns height (m). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011

  • Categories  

    This dataset provides wall-to-wall maps of forest structure across Canada's 650 million hectare forested ecosystems for the year 2022, generated at a spatial resolution of 30 m. Structure estimates include key attributes such as canopy height, canopy cover, and aboveground biomass, derived using a combination of airborne lidar and Landsat-based spectral composites. Structure models were trained using the - lidar-plot framework - (Wulder et al. 2012), which integrates co-located airborne lidar data and ground plot measurements with Landsat time-series composites (Hermosilla et al. 2016). A Nearest Neighbour imputation approach was applied to estimate structural attributes across the full extent of Canada's forested area. These nationally consistent products are intended to support strategic-level forest monitoring and assessment and are not designed for operational forest management. For further details on the methods, accuracy assessment, and source data, see Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714. https://doi.org/10.1016/j.rse.2018.07.024 (Matasci et al. 2018)