Geoscientific information
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The compilation represents publicly available reports of geochronological information for Canada. This includes federal, provincial and territorial government publications and reports, university theses, books and journals. Current coverage is limited to those areas that have been the target of recent past compilation efforts, with other areas and updates being included as they become ready. Users should be aware that the compilation may not include all available data for a given area. Every effort is made to report the ages without reinterpreting the original authors' intent. However, care has also been taken to highlight the salient features of the data by which the end-user can make initial judgment on the data robustness. Users are cautioned that because of space limitations and the necessary summarization of often complex datasets, that the original publication should be consulted to verify age interpretations and their rationale. Data may be extracted by the user in tab-delimited text format.
-
The "Canadian Database of Geochemical Surveys" has two long-term goals. Firstly, it aims to catalogue all of the regional geochemical surveys that have been carried out across Canada, beginning in the 1950s. Secondly, it aims to make the raw data from those surveys available in a standardised format. Over 1,500 surveys have been catalogued. Of these, the raw data for over 300 have been converted to a standardised format. The catalogue can be searched at https:\\geochem.nrcan.gc.ca
-
Forest Total Aboveground Biomass 2015 Total aboveground biomass. Individual tree total aboveground biomass is calculated using species-specific equations. In the measured ground plots, aboveground biomass per hectare is calculated by summing the values of all trees within a plot and dividing by the area of the plot. Aboveground biomass may be separated into various biomass components (e.g. stem, bark, branches, foliage) (units = t/ha). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011
-
100 Class - Canadian Ecological Domain Classification from Satellite Data. Satellite derived data including 1) topography, 2) landscape productivity based on photosynthetic activity, and 3) land cover were used as inputs to create an environmental regionalization of the over 10 million km2 of Canada’s terrestrial land base. The outcomes of this clustering consists of three main outputs. An initial clustering of 100 classes was generated using a two-stage multivariate classification process. Next, an agglomerative hierarchy using a log-likelihood distance measure was applied to create a 40 and then a 14 class regionalization, aimed to meaningfully group ecologically similar components of Canada's terrestrial landscape. For more information (including a graphical illustration of the cluster hierarchy) and to cite this data please use: Coops, N.C., Wulder, M.A., Iwanicka, D. 2009. An environmental domain classification of Canada using earth observation data for biodiversity assessment. Ecological Informatics, Vol. 4, No. 1, Pp. 8-22, DOI: https://doi.org/10.1016/j.ecoinf.2008.09.005. ( Coops et al. 2009).
-
Dominant Species Map 2015 The data represent dominant tree species for British Columbia forests in 2015, are based upon Landsat data and modeling, with results mapped at 30 m spatial resolution. The map was generated with the Random Forests classifier that used predictor variables derived from Landsat time series including surface reflectance, land cover, forest disturbance, and forest structure, and ancillary variables describing the topography and position. Training and validation samples were derived from the Vegetation Resources Inventory (VRI), from a pool of polygons with homogeneous internal conditions and with low discrepancies with the remotely sensed predictions. Local models were applied over 100x100 km tiles that considered training samples from the 5x5 neighbouring tiles to avoid edge effects. An overall accuracy of 72% was found for the species which occupy 80% of the forested areas. Satellite data and modeling have demonstrated the capacity for up-to-date, wall-to-wall, forest attribute maps at sub-stand level for British Columbia, Canada. BC Species Likelihood 2015 The tree species class membership likelihood distribution data included in this product focused on the province of British Columbia, based upon Landsat data and modeling, with results mapped at 30 m spatial resolution. The data represent tree species class membership likelihood in 2015. The map was generated with the Random Forests classifier that used predictor variables derived from Landsat time series including surface reflectance, land cover, forest disturbance, and forest structure, and ancillary variables describing the topography and position. Training and validation samples were derived from the Vegetation Resources Inventory (VRI) selecting from a stratified pool of polygons with homogeneous internal conditions and with low discrepancies when related to remotely sensed information. Local models were applied over 100x100 km tiles that, to avoid edge effects, considered training samples from the 5x5 neighbouring tiles. An overall accuracy of 72% was found for the species which occupy 80% of the forested areas. As an element of the mapping process, we also obtain the votes received for each class by the Random Forest models. The votes can be understood as analogous to class membership likelihoods, providing enriched information on land cover class uncertainty for use in modeling. Tree species class membership likelihoods lower than 5% have been masked and converted to zero. When using this data, please cite as: Shang, C., Coops, N.C., Wulder, M.A., White, J.C., Hermosilla, T., 2020. Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. International Journal of Applied Earth Observation and Geoinformation 84, 101956. DOI: 10.1016/j.jag.2019.101956 ( Shang et al. 2020).
-
Dynamic Habitat Index. (2000-2005) Satellite derived estimates of photosynthetically active radiation can be obtained from satellites such as MODIS. Knowledge of the land cover allows for calculation the fraction of incoming solar radiation that is absorbed by vegetation. This fraction of photosynthetically active radiation (fPAR) absorbed by vegetation describes rate at which carbon dioxide and energy from sunlight are assimilated into carbohydrates during photosynthesis of plant tissues. The summation of carbon assimilated by the vegetation canopy over time yields the landscape's gross primary productivity. Daily MODIS imagery is the basis for periodic composites and monthly data products. Over the 6 year period from 2000-2005, we calculate the annual average cumulative total of 72 monthly fPAR measurements, to describe the integrated annual vegetative production of the landscape, the integrated average annual minimum monthly fPAR measurement, which describes the annual minimum green cover of the observed landscape, and the integrated average of the annual covariance of fPAR, which describes the seasonality of the observed landscape. We also share the combination of the annual integrated values for visualization and analysis as the Dynamic Habitat Index (with additional information in Coops et al. 2008). When using this data, please cite as: Coops, N.C., Wulder, M.A., Duro, D.C., Han, T. and Berry, S., 2008. The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators, 8(5), pp.754-766. ( Coops et al. 2008).
-
Forest Basal Area 2015 Cross-sectional area of tree stems at breast height. The sum of the cross-sectional area (i.e. basal area) of each tree in square metres in a plot, divided by the area of the plot (ha) (units = m2ha). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011
-
The British Columbia Detailed Soil Survey dataset series at a scale of 1:100 000 consists of geo-referenced soil polygons with linkages to attribute data found in the associated Component File (CMP), Soil Names File (SNF) and Soil Layer File (SLF). Together, these datasets describe the spatial distribution of soils and associated landscapes for nearly all agricultural areas for the Lower Fraser Valley, British Columbia.
-
Forest Lorey's Height 2015 Lorey's mean height. Average height of trees weighted by their basal area (m). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011
-
Forest Elevation(Ht) Stddev 2015 Standard deviation of height of lidar first returns (m). Represents the variability in canopy heights. Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Geographic extent: Canada's forested ecosystems (~ 650 Mha) Time period: 1985–2011