Topic
 

biota

1064 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1064
  • Categories  

    Náttúrulegt birkilendi á Íslandi er kortlagning yfir alla náttúrulega birkiskóga og birkikjarr á Íslandi. Helstu upplýsingar eru hæð, þekja og aldur. Skilið er á milli núverandi hæðar og aldur fullvaxta birkis. Það er gert samkvæmt alþjóðlegum skilgreiningum um hæð trjágróðurs þar sem miðað er við hæð fullvaxta skógar. Birki var fyrst kortlagt á árunum 1972-1975 og var unnin leiðrétting á gögnunum og gerðar frekari greiningar á árunum 1987-1991. Gögnin voru því komin nokkuð til ára sinna þegar ákveðið var að hefja endurkortlagningu á öllu náttúrulegu birki á Íslandi. Fór sú vinna fram á árunum 2010-2014 og er núverandi þekja því afrakstur þeirrar vinnu. Flatarmál náttúrulegs birkis á Íslandi er 150.600 ha. Frá árinu 1987 hefur flatarmál birkis með sjálfsáningu aukist um 9% og nemur 13.000 ha. Gögnin voru upphaflega hugsuð fyrir mælikvarða 1:15.000, hins vegar var talsvert stór hluti landsins kortlagður í mælikvarða 1:5000 – 1:10.000.

  • Categories  

    The shallow, coastal regions of the world’s oceans are highly productive ecosystems providing important habitat for commercial, forage, endangered, and iconic species. Given the diversity of ecosystem services produced or supported by this ecosystem, a better understanding of its structure and function is central to developing an ecosystem-based approach to management. However this region termed the ‘white strip’ by marine geologists because of the general lack of high-resolution bathymetric data - is dynamic, highly variable, and difficult to access making data collection challenging and expensive. Since substrate is a key indicator of habitat in this important ecosystem, we created a continuous substrate map of Bottom Patches (BoPs) from the best available bottom type data using an approach that is simple, quantitative, and transparent making it amenable to iterative improvement as data quality and availability improve. To provide subsequent analyses (such as habitat models) with some confidence in the defined bottom type values, we developed a corresponding confidence surface based on the agreement of, and distance between observations. Such data are critical to assessments of species distributions and anthropogenic risk. Bottom patches (BoPs) have been created to represent bottom type for the entire Pacific Canadian coast from the high high water line to a depth of 50 metres (m). As a polygon representation, the BoPs describe patches of similar substrate prescribed by depth classes and the available field observations. In the areas where no observations are available, predicted bottom type values are used. The approach is described in Gregr et al. (2013), as a spatial framework for representing nearshore ecosystems. Accuracy of the bottom type depends on a multitude of factors but primarily the reliability and density of the bottom type observations. The horizontal accuracy of these data likely ranges from metres to 10s of metres because of the source data or data processing required. Areas with a higher data density, where the data show strong coherence, are understood to have higher accuracy. The BoPs use depth ribbons (polygons describing bathymetric ecozones) as an input. Depth ribbons for Pacific Canada were created from a high resolution (20 x 20 m2) bathymetry. Given the resolution of these data, processing was facilitated by dividing the Pacific Coast into 5 regions. The West Coast of Vancouver Island, extending from Cape Sutil in the North past Port San Juan to the South, includes a total of 110,313 BoP polygons. Bottom Patches for Queen Charlotte Strait and Strait of Georgia regions were combined for a total of 235,754 BoP polygons. The North Central Coast region, extending from the Alaskan border in the North to Cape Caution in the South, includes a total of 431,639 BoP polygons. The Haida Gwaii region includes a total of 86,825 BoP polygons. These data are intended for scientific research only. The developers (Fisheries and Oceans Canada, SciTech Environmental Consulting) are not responsible for damages resulting from any omissions or errors that may be contained in this dataset and expressly disclaims any warranty of fitness for any particular purpose. Developers shall not be liable for any losses, financial or otherwise, due to the use of these data. The user assumes the entire risk as to the suitability, results and performance of the dataset for their proposed use. Please credit SciTech and Fisheries and Oceans Canada as the source of the data in any maps, reports, or articles that are printed or published on paper or the Internet.

  • Categories  

    The documented occurrence data package contains 3 datasets that, in combination, help to provide generalized information about woodland caribou locations and survey areas in Saskatchewan. This information may assist users in their efforts to avoid or mitigate impacts to woodland caribou when operating in woodland caribou range. Generalized locations of caribou use have been provided to better reflect their large home ranges. Absence of a hexagon in an area should not be interpreted as absence of woodland caribou. Please read the Data Guide for important information about this product. Download survey boundaries, telemetry occurrence, and sightings/sign. Download the full package, including data guide here. The Woodland Caribou Documented Occurrence public data product is composed of three shapefiles/feature classes: 1. Woodland Caribou Occurrence - Sighting and Sign 2. Woodland Caribou Occurrence - Telemetry 3. Woodland Caribou Survey Boundaries The two occurrence datasets contain a grid of 18 sq km hexagons (tessellation). The inclusion of a hexagon in the dataset indicates that one or more animal sightings or sign, or telemetry points have been documented in that area. Importantly, lack of caribou occurrence (e.g. no hexagon) should not be interpreted as absence of woodland caribou. Rather, data may not have been collected in these areas or incidental or other observations have not been received.   The survey boundaries dataset displays the boundaries of woodland caribou surveys that were completed by or in collaboration with the Ministry of Environment from 2005 to 2024. Boundaries are from multiple sources, and include various types of surveys (fecal pellet collection or telemetry). These boundaries provide context when viewed alongside the woodland caribou occurrence datasets. We expect to see more occurrence locations in areas that have been surveyed. This information may provide context to areas with a seemingly higher number of occurrences.  For a full description of the data, please refer to the Data Guide document available for download on the Saskatchewan GeoHub.

  • Categories  

    Polygons denoting concentrations of sea pens, small and large gorgonian corals and sponges on the east coast of Canada have been identified through spatial analysis of research vessel survey by-catch data following an approach used by the Northwest Atlantic Fisheries Organization (NAFO) in the Regulatory Area (NRA) on Flemish Cap and southeast Grand Banks. Kernel density analysis was used to identify high concentrations and the area occupied by successive catch weight thresholds was used to identify aggregations. These analyses wereperformed for each of the five biogeographic zones of eastern Canada. The largest sea pen fields were found in the Laurentian Channel as it cuts through the Gulf of St. Lawrence, while large gorgonian coral forests were found in the Eastern Arctic and on the northern Labrador continental slope. Large ball-shaped Geodia spp. sponges were located along the continental slopes north of the Grand Banks, while on the Scotian Shelf a unique population of the large barrel-shaped sponge Vazella pourtalesi was identified. The latitude and longitude marking the positions of all tows which form these and other dense aggregations are provided along with the positions of all tows which captured black coral, a non-aggregating taxon which is long-lived and vulnerable to fishing pressures. These polygons identify small gorgonian coral fields from the broader distribution of small gorgonian corals in the region as sampled by Campelen trawl gear in the Eastern Arctic biogeographic zone. A 0.05 kg minimum threshold for the small gorgonian coral catch was identified as the weight that separated the small gorgonian field habitat from the broader distribution of small gorgoninan corals with these research vessel tow data and gear type.

  • Categories  

    The European Green Crab (EGC) is a high-risk global invader that can devastate coastal marine ecosystems by displacing native species, degrading and disturbing native habitats (including eelgrass), and altering food webs. EGC has recently been detected in the Canadian portion of the Salish Sea. As EGC continue to establish in the region, identifying locations on which to focus limited monitoring resources is an ongoing problem given the vast amount of coastal habitat that could be occupied by the species. A variety of methods can be used to identify highly suitable habitats for EGC at a range of spatial scales. However, none have been evaluated in the context of informing EGC management, nor for the Canadian portion of the Salish Sea. Here we evaluate five individual methods developed to assess habitat suitability for EGC (i.e., MaxEnt, stochastic gradient boosted linear and logistic regression models, a rapid site selection tool, and a qualitative site assessment and ranking tool) and five derived models generated by multiplying the outputs of these individual models. Each model relied on slightly different environmental and habitat input variables affecting EGC invasion success. Thus, rather than identifying a single preferred model, we used a multi-model ensemble approach to identify sites that are expected to be most suitable for the species. The ensemble approach likely increases predictive power by including both environmental and habitat characteristics when identifying priority sites for early detection/monitoring for EGC in the Canadian waters of the Salish Sea. Finally, we describe how the models evaluated here, alone or in combination, could be used to identify additional sites either within the Salish Sea or into new areas. This dataset contains predicted habitat suitability from five models for European Green Crab at beaches in the Salish Sea (British Columbia, Pacific Region).

  • Categories  

    Polygons denoting concentrations of sea pens, small and large gorgonian corals and sponges on the east coast of Canada have been identified through spatial analysis of research vessel survey by-catch data following an approach used by the Northwest Atlantic Fisheries Organization (NAFO) in the Regulatory Area (NRA) on Flemish Cap and southeast Grand Banks. Kernel density analysis was used to identify high concentrations and the area occupied by successive catch weight thresholds was used to identify aggregations. These analyses were performed for each of the five biogeographic zones of eastern Canada. The largest sea pen fields were found in the Laurentian Channel as it cuts through the Gulf of St. Lawrence, while large gorgonian coral forests were found in the Eastern Arctic and on the northern Labrador continental slope. Large ball-shaped Geodia spp. sponges were located along the continental slopes north of the Grand Banks, while on the Scotian Shelf a unique population of the large barrel-shaped sponge Vazella pourtalesi was identified. The latitude and longitude marking the positions of all tows which form these and other dense aggregations are provided along with the positions of all tows which captured black coral, a non-aggregating taxon which is long-lived and vulnerable to fishing pressures. These polygons identify sea pen fields from the broader distribution of sea pens in the region as sampled by Western II A trawl gear in the Scotian Shelf biogeographic zone. A 0.1 kg minimum threshold for the sea pen catch was identified as the weight that separated the sea pen field habitat from the broader distribution of sea pens with these research vessel tow data and gear type.

  • Categories  

    Polygons denoting concentrations of sea pens, small and large gorgonian corals and sponges on the east coast of Canada have been identified through spatial analysis of research vessel survey by-catch data following an approach used by the Northwest Atlantic Fisheries Organization (NAFO) in the Regulatory Area (NRA) on Flemish Cap and southeast Grand Banks. Kernel density analysis was used to identify high concentrations and the area occupied by successive catch weight thresholds was used to identify aggregations. These analyses were performed for each of the five biogeographic zones of eastern Canada. The largest sea pen fields were found in the Laurentian Channel as it cuts through the Gulf of St. Lawrence, while large gorgonian coral forests were found in the Eastern Arctic and on the northern Labrador continental slope. Large ball-shaped Geodia spp. sponges were located along the continental slopes north of the Grand Banks, while on the Scotian Shelf a unique population of the large barrel-shaped sponge Vazella pourtalesi was identified. The latitude and longitude marking the positions of all tows which form these and other dense aggregations are provided along with the positions of all tows which captured black coral, a non-aggregating taxon which is long-lived and vulnerable to fishing pressures. These polygons identify sea pen fields from the broader distribution of sea pens in the Southern Gulf region as sampled by Western II A trawl gear in the Gulf biogeographic zone. A 15 kg minimum threshold for the sea pen catch was identified as the weight that separated the sea pen field habitat from the broader distribution of sea pens with these research vessel tow data and gear type.

  • Categories  

    Foreshore Plant Habitat Zones for Okanagan region lakes. The purpose of this data is to support the Large Lakes Protocol, an interagency document that addresses the processes that need to be followed during foreshore development. The required application process varies depending on habitat value zone

  • Categories  

    Distribution of kelp beds in coastal British Columbia. Attribute information includes relative abundance, species, biomass and density of the beds. CRIMS is a legacy dataset of BC coastal resource data that was acquired in a systematic and synoptic manner from 1979 and was intermittently updated throughout the years. Resource information was collected in nine study areas using a peer-reviewed provincial Resource Information Standards Committee consisting of DFO Fishery Officers, First Nations, and other subject matter experts. There are currently no plans to update this legacy data.

  • Categories  

    The locations of coastal British Columbia overnight campsites and campgrounds. The Coastal BC datasets are circa 2004 and legacy in nature. Caution should be exercised when using this data, as it may not be accurate or complete. There are currently no plans to update.